
1

Neural Search in Action

CVPR 2023 Tutorial on

Yusuke Matsui
The University of Tokyo

Martin Aumüller
IT University of Copenhagen

Han Xiao
Jina AI

2

Yusuke Matsui

✓ Image retrieval
✓ Large-scale indexing

http://yusukematsui.me

Lecturer (Assistant Professor), the University of Tokyo, Japan
@utokyo_bunny

ARM 4-bit PQ [Matsui+, ICASSP 22]
Image Retrieval in the Wild
[Matsui+, CVPR 20, tutorial]

@matsui528

3

Martin Aumüller

✔ Similarity search using hashing
✔ Benchmarking & workload generation

http://itu.dk/people/maau

Associate Professor, IT University of Copenhagen, Denmark
@maumueller

PUFFINN
[Aumüller+, ESA 2019]

Billion-Scale ANN Challenge
[Aumüller+, NeurIPS 21, Competition]

4

Han Xiao

✔ Multimodal search & generation
✔ Model tuning & serving; prompt tuning

& serving

https://jina.ai

Founder & CEO of Jina AI
@hxiao

5

Example: Multimodal Search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs
playing in
the snow”

…

Search

Images

✓

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

6
Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling gold at
the 2022 Winter Olympics?"

“Niklas Edin, Oskar
Eriksson, …”

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”

…

“Chinami Yoshida¥n¥n==Personal…”

“2022 Olympics medal winners…”

+

Example: LLM + embedding

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

7

Target audiences
➢ Those who want to try Neural Search
➢ Those who have tried Neural Search but would like to

know more about the algorithm in depth

Our talk
➢ Million-scale search (Yusuke)
➢ Billion-scale search (Martin)
➢ Query language (Han)

8

Time Session Presenter
13:30 – 13:40 Opening Yusuke Matsui

13:40 – 14:30 Theory and Applications of Graph-based Search Yusuke Matsui

14:30 – 15:20 A Survey on Approximate Nearest Neighbors in a
Billion-Scale Settings

Martin Aumüller

15:20 – 15:30 Break

15:30 – 16:20 Query Language for Neural Search in Practical
Applications

Han Xiao

Schedule

1

Theory and Applications of

Graph-based Search

Yusuke Matsui
The University of Tokyo

CVPR 2023 Tutorial on Neural Search in Action

2

Yusuke Matsui

✓ Image retrieval

✓ Large-scale indexing

http://yusukematsui.me

Lecturer (Assistant Professor), the University of Tokyo, Japan

@utokyo_bunny

ARM 4-bit PQ [Matsui+, ICASSP 22]
Image Retrieval in the Wild

[Matsui+, CVPR 20, tutorial]

@matsui528

3

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

4

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

Search 𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

5

➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

Nearest Neighbor Search; NN

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

𝒒 ∈ ℝ𝐷 𝒙74

argmin
𝑛∈ 1,2,…,𝑁

𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

6

➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

➢Given a query 𝒒, find the closest vector from the database
➢One of the fundamental problems in computer science
➢Solution: linear scan, 𝑂 𝑁𝐷 , slow

Nearest Neighbor Search; NN

Often, argmax + inner product is also considered.
Don’t care in this talk.

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

𝒒 ∈ ℝ𝐷 𝒙74

argmin
𝑛∈ 1,2,…,𝑁

𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Approximate Nearest Neighbor Search; ANN

➢Faster search
➢Don’t necessarily have to be exact neighbors
➢Trade off: runtime, accuracy, and memory-consumption

7

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

𝒒 ∈ ℝ𝐷 𝒙74

argmin
𝑛∈ 1,2,…,𝑁

𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Approximate Nearest Neighbor Search; ANN

➢Faster search
➢Don’t necessarily have to be exact neighbors
➢Trade off: runtime, accuracy, and memory-consumption

8

➢ In this talk, suppose: 𝑁 < 109
➢ All data can be loaded on memory

9

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

10

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

𝒙1

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

11

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

𝒙1, 𝒙2,

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

12

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

𝒙1, 𝒙2, … , 𝒙𝑁

…

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

13

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

0.23
3.15
0.65
1.43

Search
𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

“Two dogs playing
in the snow”

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

14

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing
in the snow”

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

15

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing
in the snow”

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

➢ Encoder determines the upper bound of the accuracy of the system
➢ ANN determines a trade-off between accuracy, runtime, and memory

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

16

Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

17

Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“I'm sorry, but as an AI language
model, I don't have information
about the future events.”

Ask

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

18

Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

19

Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida¥n¥n==Personal…”

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

20

Real-world use cases 2: LLM + embedding

𝒙1,

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

21

Real-world use cases 2: LLM + embedding

𝒙1, 𝒙2,

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

22

Real-world use cases 2: LLM + embedding

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

23

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

24

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

Search

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

“List of 2022 Winter
Olympics medal winners…”

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

25

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

Search

Update

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the
2022 Winter Olympics?
Use the bellow articles: List of
2022 Winter Olympics medal
winners…”

“List of 2022 Winter
Olympics medal winners…”

ChatGPT 3.5
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

26

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

“Niklas Edin, Oskar
Eriksson, …”

Search

Update
☺

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the
2022 Winter Olympics?
Use the bellow articles: List of
2022 Winter Olympics medal
winners…”

“List of 2022 Winter
Olympics medal winners…”

ChatGPT 3.5
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

27

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

“Niklas Edin, Oskar
Eriksson, …”

Search

Update
☺

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the
2022 Winter Olympics?
Use the bellow articles: List of
2022 Winter Olympics medal
winners…”

“List of 2022 Winter
Olympics medal winners…”

ChatGPT 3.5
(trained in 2021)

Embedding+ANN is the current easiest
way to provide knowledge to LLM

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

28

Real-world use cases 2: LLM + embedding

0.23
3.15
0.65
1.43

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling
gold at the 2022
Winter Olympics?"

“Niklas Edin, Oskar
Eriksson, …”

Search

Update
☺

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…

Text
Encoder

“Chinami Yoshida¥n¥n==Personal…”
Te

xt
En

co
d

er

“Who won curling gold at the
2022 Winter Olympics?
Use the bellow articles: List of
2022 Winter Olympics medal
winners…”

“List of 2022 Winter
Olympics medal winners…”

ChatGPT 3.5
(trained in 2021)

Embedding+ANN is the current easiest
way to provide knowledge to LLM

https://em-content.zobj.net/thumbs/120/twitter/322/thinking-face_1f914.png

Vector DB???

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
https://em-content.zobj.net/thumbs/120/twitter/322/thinking-face_1f914.png

29

Three levels of technology

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jina

Three levels of technology

30

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Weaviate

Vertex AI
Matching Engine

NMSLIB

hnswlib
Vald

ScaNN

jina

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

One library may implement
multiple algorithms

 “I benchmarked faiss”
☺ “I benchmarked PQ in faiss”

Three levels of technology

31

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Weaviate

Vertex AI
Matching Engine

Vald

ScaNN

jina

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

NMSLIB

hnswlib

One algorithm may be
implemented in multiple libraries

Three levels of technology

32

Milvus

Pinecone

Qdrant

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI
Matching Engine

faiss

NMSLIB

hnswlib
Vald

jina

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

ScaNN

Often, one library = one algorithm

Three levels of technology

33

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Vertex AI
Matching Engine

NMSLIB

Vald

ScaNN

jina

Weaviate

Milvus

faiss

hnswlib

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

One service may use some libraries

… or re-implement
algorithms from
scratch (e.g., by Go)

34

Three levels of technology

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library + (handling metadata,

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization +
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jinaThis talk mainly focuses algorithms

35

𝑁

109

106

b
ill

io
n

-s
ca

le
m

ill
io

n
-s

ca
le Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

0.34
0.22
0.68
0.71

0

1

0

0

ID: 2

ID: 123

0.34
0.22
0.68
0.71

Space partition Data compression

➢ k-means
➢ PQ/OPQ
➢ Graph traversal
➢ etc…

➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by
Asymmetric Distance

…

Linear-scan by
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory: For compressed data: Acc. , Memory: ☺

36

𝑁

109

106

b
ill

io
n

-s
ca

le
m

ill
io

n
-s

ca
le Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

0.34
0.22
0.68
0.71

0

1

0

0

ID: 2

ID: 123

0.34
0.22
0.68
0.71

Space partition Data compression

➢ k-means
➢ PQ/OPQ
➢ Graph traversal
➢ etc…

➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by
Asymmetric Distance

…

Linear-scan by
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory: For compressed data: Acc. , Memory: ☺

Today’s my topic

37

𝑁

109

106

b
ill

io
n

-s
ca

le
m

ill
io

n
-s

ca
le Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

0.34
0.22
0.68
0.71

0

1

0

0

ID: 2

ID: 123

0.34
0.22
0.68
0.71

Space partition Data compression

➢ k-means
➢ PQ/OPQ
➢ Graph traversal
➢ etc…

➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by
Asymmetric Distance

…

Linear-scan by
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory: For compressed data: Acc. , Memory: ☺See my previous
tutorial at CVPR20

https://speakerdeck.com/matsui_528/cvpr
20-tutorial-billion-scale-approximate-
nearest-neighbor-search

Today’s my topic

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search

38

𝑁

109

106

b
ill

io
n

-s
ca

le
m

ill
io

n
-s

ca
le Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

0.34
0.22
0.68
0.71

0

1

0

0

ID: 2

ID: 123

0.34
0.22
0.68
0.71

Space partition Data compression

➢ k-means
➢ PQ/OPQ
➢ Graph traversal
➢ etc…

➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by
Asymmetric Distance

…

Linear-scan by
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory: For compressed data: Acc. , Memory: ☺See my previous
tutorial at CVPR20

https://speakerdeck.com/matsui_528/cvpr
20-tutorial-billion-scale-approximate-
nearest-neighbor-search

See Martin’s next
presentation!

Today’s my topic

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search

39

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

40

Graph search

➢ De facto standard if all data can be loaded on memory
➢ Fast and accurate for real-world data
➢ Important for billion-scale situation as well
✓ Graph-search is a building block for billion-scale systems

Images are from [Malkov+, Information Systems, 2013]

➢ Traverse graph towards the query
➢ Seems intuitive, but not so much

easy to understand
➢ Review the algorithm carefully

41

Graph search

➢ De facto standard if all data can be loaded on memory
➢ Fast and accurate for real-world data
➢ Important for billion-scale situation as well
✓ Graph-search is a building block for billion-scale systems

Images are from [Malkov+, Information Systems, 2013]

➢ Traverse graph towards the query
➢ Seems intuitive, but not so much

easy to understand
➢ Review the algorithm carefully

The purpose of this tutorial is to make
graph search not a black box

42

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current

graph incrementally
➢ Iteratively refine an initial graph

43

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current

graph incrementally
➢ Iteratively refine an initial graph

44

Images are from [Malkov+, Information Systems, 2013]

➢Each node is a database vector

𝒙13

Graph of
𝒙1, … , 𝒙90

Construction: incremental approach

45

➢Each node is a database vector
➢Given a new database vector,

𝒙13

𝒙91

Graph of
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

46

➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

47

➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

48

➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

➢ Prune edges if some node have too many edges
➢ Several strategies (e.g., RNG-pruning)

49

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current

graph incrementally
➢ Iteratively refine an initial graph

50

Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)

51

Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)

➢Need to be moderately sparse (otherwise the
graph traverse is slow)

➢ Some “long” edges are required for shortcut

52

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

➢ Given a query vector

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Name each node for
explanation

53

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

➢ Given a query vector
➢ Start from an entry point (e.g.,)

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

M

54

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

➢ Given a query vector
➢ Start from an entry point (e.g.,). Record the distance to q.

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

M

M 23.1

55

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

23.1M

56

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

M 23.1

1st iteration

57

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

➢ Pick up the unchecked best candidate ()

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

M

M 23.1

Best

Best

58

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

➢ Pick up the unchecked best candidate (). Check it.

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

M

M 23.1

Best

Best

check!

59

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

23.1

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.

Best

M

M

check!

60

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

23.1

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

N

M

M

check!

61

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

N

M

J 11.1

N 15.3

K 19.4

M 23.1

check!

62

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

N

M

J 11.1

N 15.3

K 19.4

M 23.1

63

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

N

M

J 11.1

N 15.3

K 19.4

M 23.1

64

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

N

M

J 11.1

N 15.3

K 19.4

65

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

66

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

2nd iteration

67

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

➢ Pick up the unchecked best candidate ()J

Best

Best

68

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

➢ Pick up the unchecked best candidate (). Check it. J

Best

Best

check!

69

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.

J

Best

Best

check!

70

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

J 11.1

N 15.3

K 19.4

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

J

Best

13.2
9.7

check!
Already
visited

71

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

J

Best

13.2
9.7

J 11.1

N 15.3

K 19.4

B 2.3

G 3.5

I 9.7

F 10.2

L 13.2

check!
Already
visited

72

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

J

Best J 11.1

N 15.3

K 19.4

B 2.3

G 3.5

I 9.7

F 10.2

L 13.2

73

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

J

Best J 11.1

N 15.3

K 19.4

B 2.3

G 3.5

I 9.7

F 10.2

L 13.2

74

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

J

Best

B 2.3

G 3.5

I 9.7

75

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

76

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

3rd iteration

77

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

Best

Best

➢ Pick up the unchecked best candidate ()B

78

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

Best

Best

➢ Pick up the unchecked best candidate (). Check it.B

check!

79

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

Best

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.

B

check!

80

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7
Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

B

0.5

2.1

check!

81

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

Best

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

B

0.5

2.1

C 0.5

D 2.1

A 3.6

B 2.3

G 3.5

I 9.7

check!

82

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

B

C 0.5

D 2.1

A 3.6

B 2.3

G 3.5

I 9.7

Best

83

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

B

C 0.5

D 2.1

A 3.6

B 2.3

G 3.5

I 9.7

Best

84

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

B

C 0.5

D 2.1

B 2.3
Best

85

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

86

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

4th iteration

87

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). C

Best
Best

88

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.C

Best
Best

check!

89

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.

C

Best
Best

check!

90

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

C

Best

check!

Already
visited

Already
visited

Already
visited

Already
visited

91

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

C

Best

92

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

93

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

5th iteration

94

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). D

Best

Best

95

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.D

Best

Best

check!

96

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.

D

Best

Best

check!

97

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

D

Best

check!

Already
visited

Already
visited

98

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

D

Best

check!

Already
visited

Already
visited

H 3.9

99

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.

D

Best

H 3.9

100

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

D

Best

H 3.9

101

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

D

Best

102

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ All candidates are checked. Finish.
➢ Here, is the closet to the query ()C

103

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

C

Final output 1: Candidates
➢ You can pick up topk results

➢ All candidates are checked. Finish.
➢ Here, is the closet to the query ()

104

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

C

Final output 1: Candidates
➢ You can pick up topk results

➢ All candidates are checked. Finish.
➢ Here, is the closet to the query ()Final output 2: Checked items
➢ i.e., search path

105

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ All candidates are checked. Finish.
➢ Here, is the closet to the query ()C

Final output 1: Candidates
➢ You can pick up topk results

Final output 2: Checked items
➢ i.e., search path

Final output 3: Visit flag
➢ For each item, visited or not

106

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

107

Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷

𝒙13 ∈ ℝ𝐷

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4

108

Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷

𝒙13 ∈ ℝ𝐷

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4

To accelerate the search,
(1) How to shorten the search path?
➢ E.g., long edge (shortcut), hierarchical structure

(2) How to sparsify the graph?
➢ E.g., deleting redundant edges

109

A

D

C

B

query

Observation: candidate size

E

start
Candidates
(size = 1)

C

A

D

C

B

query

E

start
Candidates
(size = 3)

C

D

E

size = 1: Greedy search size > 1: Beam search

➢ Larger candidate size, better but slower results
➢ Online parameter to control the trade-off
➢ Called “ef” in HNSW

Fast. But stuck in a local minimum

Slow. But find a better solution

110

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

111

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Sort the array explicitly

Candidates are stored
in a set

Candidates are stored in a
heap; automatically sorted

Candidates are stored
in an array

When need to sort,
say “closest L points”

112

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Just “check” Checked items are stored in a set (“visit” in
this code means “check” in our notation)

113

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Visited item are simply said to be “visited”; implying
an additional hidden data structure (array)

Visited items are
stored in a set

114

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Termination condition??

115

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

My explanation was based on NSG, but with slight modifications for simplicity:
➢ Candidates are stored in an automatically-sorted array
➢ Termination condition is “all candidates are checked”

116

Pseudo code

➢ All papers have totally different pseudo code
➢ Principles are the same. But small parts are very different
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Formal (?) definition would be helpful for everyone

117

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

118

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

119

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Principal:
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable

120

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Famous Delaunay graph
☺ Always reaches the correct answer
 Almost fully connected when 𝐷 is large

Principal:
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable

121

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Relative Neighborhood Graph (RNG) [Toussaint, PR 80]
➢ Consider 𝑥 and 𝑦. There must be no points in the “lune”
➢ Can cut off redundant edges
➢ Not famous in general, but widely used in ANN
➢ Will review again later

Principal:
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable

122

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

K Nearest Neighbor Graph
☺ Can limit the number of neighbor (K at most), enforcing a sparsity
 No guaranty for the connectivity

Principal:
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable

123

Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Minimum Spanning Tree (MST)
☺ Ensure the global connectivity. Low degree.
 Lack of shortcuts

Principal:
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable

124

Graph search algorithms

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Lots of algorithms
➢ The basic structure is same: (1) designing a good graph + (2) beam search

125

The initial seed matters

Start here? Start here?

v.s.

➢ Starting from a good seed ➡ Shorter path ➡ Faster search

➢ Finding a good seed is also an ANN problem
➢ Solve a small ANN problem by tree [NST; Iwasaki+, arXiv 18],

hash [Effana; Fu+, arXiv 16] or LSH [LGTM; Arai+, DEXA 21]

126

Edge selection: RNG-pruning

A

When inserting A,
where to edge?

A

All
neighbors?

➢ Too many edges
➢ Slow for search

A
Top-K?

➢ Not reachable
➢ Low accuracy.

A

 ☺
Probably
connected

So we don’t
need this

RNG-pruning: Moderate
number of edges

127

CB
D

A

Given A, make edges to
B, C, D, and E?

?
?

?
E

Edge selection: RNG-pruning

128

CB
D

A

E

Edge selection: RNG-pruning

129

B
D

A

Find the nearest one to A

C E

Edge selection: RNG-pruning

130

CB
D

A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

Find the nearest one to A

E

Edge selection: RNG-pruning

131

CB
D

A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

Find the nearest one to A

This time, there are no neighbors. So let’s make an edge

E

Edge selection: RNG-pruning

132

CB
D

A

done
E

Edge selection: RNG-pruning

133

CB
D

A

Find the 2nd nearest one to A

done
E

Edge selection: RNG-pruning

134

CB
D

A

Find the 2nd nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

done
E

Edge selection: RNG-pruning

Edge selection: RNG-pruning

135

CB
D

A

Find the 2nd nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

done

Shortest! Not make an edge

E

136

CB
D

A

done
done E

Edge selection: RNG-pruning

Edge selection: RNG-pruning

137

CB
D

A

done
done

Find the 3rd nearest one to A

E

Edge selection: RNG-pruning

138

CB
D

A

done
done

Find the 3rd nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

E

Edge selection: RNG-pruning

139

CB
D

A

done
done

Find the 3rd nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

Shortest! Make an edge

E

140

CB
D

A

done
done

done

E

Edge selection: RNG-pruning

Edge selection: RNG-pruning

141

CB
D

A

done
done

done

E

Find the 4th nearest one to A

Edge selection: RNG-pruning

142

CB
D

A

done
done

done

E

Find the 4th nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

Edge selection: RNG-pruning

143

CB
D

A

done
done

done

E

Find the 4th nearest one to A

➢ For all neighbors of A, compare and
➢ If is the shortest, make an edge

Shortest! Not make an edge

144

CB
D

A

done
done

done

E
done

Edge selection: RNG-pruning

145

CB
D

A

done
done

done

E
done

➢ RNG-pruning is an effective edge-pruning technique,
and used in several algorithms

Pros: Implementation is easy
Cons: Require many distance computations

Edge selection: RNG-pruning

146

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

147

Hierarchical Navigable Small World; HNSW

[Malkov and Yashunin, TPAMI, 2019]

➢ Construct the graph hierarchically [Malkov and Yashunin, TPAMI, 2019]

➢ Fix #edge per node by RNG-pruning
➢ The most famous algorithm; works very well in real world

Search on a coarse graph

Move to the same node on a
finer graph

Repeat

148

➢ Used in various services
✓ milvus, weaviate, qdrant, vearch, elasticsearch,

OpenSearch, vespa, redis, Lucene…

➢ Three famous implementations
✓ NMSLIB (the original implementation)
✓ hnswlib (light-weight implementation from NMSLIB)
✓ Faiss (re-implemented version by the faiss team)

Hierarchical Navigable Small World; HNSW

[NMSLIB] https://github.com/nmslib/nmslib
[hnswlib] https://github.com/nmslib/hnswlib
[Faiss] https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib
https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h

149
https://www.facebook.com/groups/faissusers/posts/917143142043306/?comment_id=917533385337615&reply_comment_id=920542105036743

Any implementation difference between NMSLIB,
hnswlib, and faiss-hnsw?

My view on the implementation differences (I might forgot something):

1) nmslib’s HNSW requires internal index conversion step (from nmslib’s format to an internal one) to have good performance, and after the
conversion the index cannot be updated with new elements. nmslib also has a simple "graph diversification" postprocessing after building the
index (controlled by the "post" parameter) and sophisticated queue optimizations which makes it a bit faster compared to other
implementations. Another advantage of nmslib is out-of-the box support for large collection of distance functions, including some exotic
distances.

2) hnswlib is a header-only C++ library reimplementation of nmslib's hnsw. It does not have the index conversion step, thus - the Pros
(compared to nmslib): much more memory efficient and faster at build time. It also supports index insertions, element updates (with
incremental graph rewiring - added recently) and fake deletions (mark elements as deleted to avoid returning them during the graph traversal).
Cons (compared to nnmslib): It is a tad slower than nmslib due to lack of graph postprocessing and queue optimization; out-of-the box version
supports only 3 distance functions, compared to many distance functions in nmslib. Overall, I've tried to keep hnswlib as close as possible to a
distributed index (hence no index postprocessing).

3) Faiss hnsw is a different reimplementation. It has its own algorithmic features, like having the first elements in the upper layers on the
structure (opposed to random in other implementations). It is a bit more memory efficient compared to hnswlib with raw vectors and
optimized for batch processing. Due to the latter it is noticeably slower at single query processing (opposed to nmslib or hnswlib) and
generally a bit slower for batch queries (the last time I’ve tested, but there were exceptions). The implementation also supports incremental
insertions (also preferably batched), quantized data and two-level encoding, which makes it much less memory hungry and the overall best
when memory is a big concern.

Yury Malkov
(the author of
HNSW paper)

Discussion from Faiss User Forum in FB
Note that this discussion was in 2020 and the libraries have been updated a lot since then

150

➢ See the following excellent blog posts for more details

https://www.pinecone.io/learn/hnsw/
James Briggs, PINECONE, Faiss: The
Missing Manual, 6. Hierarchical
Navigable Small Worlds (HNSW)

Hierarchical Navigable Small World; HNSW

https://zilliz.com/blog/hierarchical-
navigable-small-worlds-HNSW
Frank Liu, zilliz, Vector Database 101,
Hierarchical Navigable Small Worlds
(HNSW)

https://towardsdatascience.com
/ivfpq-hnsw-for-billion-scale-
similarity-search-89ff2f89d90e
Peggy Chang, IVFPQ + HNSW for
Billion-scale Similarity Search

https://www.pinecone.io/learn/hnsw/
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e

151

Navigating Spreading-out Graph (NSG)
➢ Monotonic RNG
➢ In some cases, slightly better than HNSW
➢ Used in Alibaba’s Taobao

RNG Monotonic RNG

➢ Recall the def. of RNG is “no point in a lune”
➢ The path “p -> q” is ling Monotonic RNG can

make more edges

[Fu+, VLDB 19]

Images are from
[Fu+, VLDB 19]

152

Navigating Spreading-out Graph (NSG)
➢ The original implementation:

➢ Implemented in faiss as well
➢ If you’re using faiss-hnsw and need a little bit more

performance with the same interface, worth trying NSG

https://github.com/ZJULearning/nsg

IndexHNSWFlat(int d, int M, MetricType metric)
IndexNSGFlat(int d, int R, MetricType metric)

[Fu+, VLDB 19]

https://github.com/ZJULearning/nsg

153

Neighborhood Graph and Tree (NGT)
➢ Make use of range search for construction
➢ Obtain a seed via VP-tree

➢ Current best methods in ann-benchmarks
are NGT-based algorithms

➢ Quantization is natively available

➢ Repository:
➢ From Yahoo Japan
➢ Used in Vald

[Iwasaki+, arXiv 18]

Image are from the
original repository

https://github.com/yahoojapan/NGT

https://github.com/yahoojapan/NGT

154

DiskANN (Vamana)
➢ Vamana: Graph-based search algorithm
➢ DiskANN: Disk-friendly search system using Vamana
➢ From MSR India

➢ Good option for huge data (not the main focus of this talk, though)
➢ The same team is actively developing interesting functionalites
✓ Data update: FreshDiskANN [Singh+, arXiv 21]
✓ Filter: Filtered-DiskANN [Gollapudi+, WWW 23]

[Subramanya+, NeurIPS 19]

https://github.com/microsoft/DiskANN

https://github.com/microsoft/DiskANN

155

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

156

Just NN? Vector DB?
➢ Vector DB companies say “Vector DB is cool”

➢ My own idea:

➢ Which vector DB? ➡ No conclusions!

➢ If you need a clean & well designed API, I recommend taking a look
at docarray in Jina AI (see Han’s talk today!)

✓ https://weaviate.io/blog/vector-library-vs-vector-database
✓ https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
✓ https://zilliz.com/learn/what-is-vector-database

Try the simplest
numpy–only search

Slow?
Try fast algorithm such

as HNSW in faiss

Try Vector DB

If speed is the only concern,
just use libraries

https://weaviate.io/blog/vector-library-vs-vector-database
https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
https://zilliz.com/learn/what-is-vector-database

157

Useful resources
➢ Several companies have very useful blog series

➢ Pinecone Blog
✓ https://www.pinecone.io/learn/

➢ Weaviate Blog
✓ https://weaviate.io/blog

➢ Jina AI Blog
✓ https://jina.ai/news/

➢ Zilliz Blog
✓ https://zilliz.com/blog

➢ Romain Beaumont Blog
✓ https://rom1504.medium.com/

https://www.pinecone.io/learn/
https://weaviate.io/blog
https://jina.ai/news/
https://zilliz.com/blog
https://rom1504.medium.com/

158

Progress in the last three years

➢ Three years have passed since my previous tutorial at CVPR 2020

➢ What progress in the last three years in the ANN field?

Y. Matasui, “Billion-scale Approximate Nearest Neighbor Search”, CVPR 2020 Tutorial
➢ Slide: https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-

approximate-nearest-neighbor-search
➢ Video: https://youtu.be/SKrHs03i08Q

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q

159

Progress in the last three years

➢ Three years have passed since my previous tutorial at CVPR 2020

➢ What progress in the last three years in the ANN field?

Y. Matasui, “Billion-scale Approximate Nearest Neighbor Search”, CVPR 2020 Tutorial
➢ Slide: https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-

approximate-nearest-neighbor-search
➢ Video: https://youtu.be/SKrHs03i08Q

➢ The basic framework is still same (HNSW and IVFPQ!)
➢ HNSW is still de facto standard; although several papers

claim they perform better
➢ Disk-based systems are getting attention
➢ Vector DB has gained rapid popularity for LLM applications.
➢ Because of LLM, we should suppose D as ~1000 (not ~100)
➢ GPU-ANN is powerful, but less widespread than I expected;

CPUs are more convenient for LLM
➢ Competitions (SISAP and bigann-benchmarks)
➢ New billion-scale datasets
➢ A breakthrough algorithm that goes beyond graph-based

methods awaits.

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q

160

➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion

161

◼ [Jégou+, TPAMI 2011] H. Jégou+, “Product Quantization for Nearest Neighbor Search”, IEEE TPAMI 2011
◼ [Guo+, ICML 2020] R. Guo+, “Accelerating Large-Scale Inference with Anisotropic Vector Quantization”, ICML 2020
◼ [Malkov+, TPAMI 2019] Y. Malkov+, “Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small

World Graphs,” IEEE TPAMI 2019
◼ [Malkov+, IS 13] Y, Malkov+, “Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs”, Information

Systems 2013
◼ [Fu+, VLDB 19] C. Fu+, “Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graphs”, 2019
◼ [Subramanya+, NeurIPS 19] S. J. Subramanya+, “DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node”,

NeurIPS 2019
◼ [Baranchuk+, ICML 19] D. Baranchuk+, “Learning to Route in Similarity Graphs”
◼ [Wang+, VLDB 21] M. Wang+, “A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest

Neighbor Search”, VLDB 2021
◼ [Toussaint, PR 80] G. T. Toussaint, “The Relative Neighbouhood Graph of A Finite Planar Set”, Pattern Recognition 1980
◼ [Fu+, arXiv 16] C. Fu and D. Cai, “Efanna: An Extremely Fast Approximate Nearest Neighbor Search Algorithm based on knn Graph”,

arXiv 2016
◼ [Arai+, DEXA 21] Y. Arai+, “LGTM: A Fast and Accurate kNN Search Algorithm in High-Dimensional Spaces”, DEXA 2021
◼ [Iwasaki+, arXiv 18] M. Iwasaki and D. Miyazaki, “Optimization if Indexing Based on k-Nearest Neighbor Graph for Proximity Search in

High-dimensional Data”, arXiv 2018
◼ [Singh+, arXiv 21] A. Singh+, “FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search”, arXiv 2021
◼ [Gollapudi+, WWW 23] S. Gollapudi+, “Filtered-DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters”,

WWW 2023

Reference

162

Reference

◼ [Pinecone] https://www.pinecone.io/
◼ [Milvus] https://milvus.io/
◼ [Qdrant] https://qdrant.tech/
◼ [Weaviate] https://weaviate.io/
◼ [Vertex AI Matching Engine] https://cloud.google.com/vertex-ai/docs/matching-engine
◼ [Vald] https://vald.vdaas.org/
◼ [Vearch] https://vearch.github.io/
◼ [Elasticsearch] https://www.elastic.co/jp/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
◼ [OpenSearch] https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
◼ [Vespa] https://vespa.ai/
◼ [Redis] https://redis.com/solutions/use-cases/vector-database/
◼ [Lucene] https://lucene.apache.org/core/9_1_0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
◼ [SISAP] SISAP 2023 Indexing Challenge https://sisap-challenges.github.io/
◼ [Bigann-benchmarks] Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurIPS'21 competition track

https://big-ann-benchmarks.com/

https://www.pinecone.io/
https://milvus.io/
https://qdrant.tech/
https://weaviate.io/
https://cloud.google.com/vertex-ai/docs/matching-engine
https://vald.vdaas.org/
https://vearch.github.io/
https://www.elastic.co/jp/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
https://vespa.ai/
https://redis.com/solutions/use-cases/vector-database/
https://lucene.apache.org/core/9_1_0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
https://sisap-challenges.github.io/
https://big-ann-benchmarks.com/

163

Thank you!
Time Session Presenter

13:30 – 13:40 Opening Yusuke Matsui

13:40 – 14:30 Theory and Applications of Graph-based Search Yusuke Matsui

14:30 – 15:20 A Survey on Approximate Nearest Neighbors in a Billion-Scale Settings Martin Aumüller

15:20 – 15:30 Break

15:30 – 16:20 Query Language for Neural Search in Practical Applications Han Xiao

Acknowledgements
➢ I would like to express my deep gratitude to Prof. Daichi Amagata, Naoki Ono, and Tomohiro Kanaumi for

reviewing the contents of this tutorial and providing valuable feedback.
➢ This work was supported by JST AIP Acceleration Research JPMJCR23U2, Japan.

Billion-Scale Nearest
Neighbor Search

CVPR 2023 Tutorial on Neural Search in Action, Part 2

Martin Aumüller

IT University of Copenhagen, maau@itu.dk

mailto:maau@itu.dk

2

Martin Aumüller

✔ Similarity search using hashing
✔ Benchmarking & workload generation

http://itu.dk/people/maau

Associate Professor, IT University of Copenhagen, Denmark
@maumueller

PUFFINN
[Aumüller+, ESA 2019]

Billion-Scale ANN Challenge
[Aumüller+, NeurIPS 21, Competition]

From Million-Scale to Billion-Scale ANN

https://github.com/erikbern/ann-benchmarks 3

1M vectors, GloVe word embeddings

Graph-based

Service

B
et

te
r

Th
ro

u
gh

p
u

t

Better Quality

https://github.com/erikbern/ann-benchmarks

From Million-Scale to Billion-Scale ANN

Rules
• Index building + searching single-threaded
• 2 hours time limit, container killed

afterwards

Q: Scaling up by 1000x?

2 hours → 2000 hours ~ 83 days
24 hours → 24000 hours ~ 3 years

(unrealistic scaling)
4

Billion-Scale ANN Challenge [Simhadri+, NeurIPS 2021]

5

Cut-off at 10k QPS

3 tracks:
in-memory,
out-of-memory,
”exotic hardware”

Many entries did not improve on baseline by much.

The ANN search pipeline

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate
selection

𝒙13
𝒙91

Scan
candidates

0.20
3.25
0.72
1.68

𝒙74
𝒙′1, 𝒙′2, … , 𝒙′𝑳~milliseconds

~several hours

6

<tl;dnl> (Roadmap)

7

Can store data +
index in RAM?

High recall?

High recall?

Graph-based ANN

IVF (or Graph-Based)

Compressed vectors
(RAM) + graph/vectors

(SSD)

IVF on compressed vectors

DiskANN/HNSW/…
(parameter selection difficult)

FAISS-IVF (better build times
+ easy parameter selection)

DiskANN

FAISS-IVF (forget original vectors)

Billion-Scale Datasets

https://big-ann-benchmarks.com/
NeurIPS 2021 Challenge

800 GB

100 GB

Microsoft Bing: Search string →Web documents

8

256 GB

Meta AI: Image descriptors for copy detection

https://big-ann-benchmarks.com/

High Resources, High Recall
Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

9

Scaling Graph-Based Approaches

https://arxiv.org/pdf/2305.04359.pdf

Machines
- Azure Msv2 (4 Xeon, 192 vCPUs,

2 TB RAM), $384 USD/day
- Azure Ev5 (2 Xeon, 96 vCPUs,

672 GB RAM), $144 USD/day

10

https://arxiv.org/pdf/2305.04359.pdf

Scaling Graph-Based Approaches

• Recap
• Vectors are nodes

• Connected to “diverse set of
similar points” + long range edges

• Incremental build
• Use search algorithm to find

potential candidate neighbors

• Prune these candidates

𝒙13
𝒙91

Index size? Faster build? Tradeoffs?

~1B x “avg. degree of node”

Practically all algorithms
enforce user-set bound!

Smaller target degree +
smaller beam width

Need larger beam width to
compensate for “worse
build graph” 11

𝒙13
𝒙91

Parallelizing insertion

• Order all points arbitrarily

• For each point:
• Carry out greedy search for

nearest neighbor in “current
graph”

• Connect to pruned set of vertices
found during the NN search

Thread-safety?

“prefix doubling”

12

Understanding parameters

• Index building
• Degree bound 𝑅

• upper limit on index size

• Beam width 𝐿 (building)
• better neighbors

• Pruning factor (𝛼)
• ”diversified neighbors”

• Searching
• Beam width 𝑅search

13

🤔
Sensitive to parameter choices &
they are difficult to choose!

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

Build times & scaling

Beam widthDegree bound
Billion-scale: Index size not more
than 4R GB (e.g., 256GB, 600GB)

10x increase → 11-12x build time increase

🤔

14

Parallelizing search

• Usually parallelization over
queries (inter-query parallelism)

• Not so much in focus

• Beam width selection: “trial-
and-error”

15

Scaling: dataset 1000x larger → queries 2x slower

Summary

• Advantages
• Good scaling of #candidates

• Unparalleled performance in high-
recall regime

• Disadvantages
• Influence of parameter choices

difficult to predict

• High index building times (but
“almost out-of-box”)

1% of dataset 0.01% of dataset

0.0001% of dataset

16

How to get started
(DiskANN)

17
Official Documentation: https://github.com/Microsoft/DiskANN
Python examples: https://github.com/harsha-simhadri/big-ann-benchmarks,

[DiskANN: Simhadri+, NeurIPS19]

https://github.com/Microsoft/DiskANN
https://github.com/harsha-simhadri/big-ann-benchmarks

High Resources, Low Recall
Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

18

IVF-based solutions (“inverted file index”)

Finding a space partition: Clustering-based (k-means), LSH-based, …

19

2 steps:
(1) Train partition
(2) Add vectors

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

IVF: insert a vector

1.02
0.73
0.56
1.37
1.37
0.72

𝒙1

Record 𝒙1

Cells: all points closest to given centroid (“Voronoi cells”)
Build parameter: #clusters

20

IVF: search

0.54
2.35
0.82
0.42
0.14
0.32

𝒒

Find the nearest vector to 𝒒

Search parameter: #clusters to inspect
Candidates: #clusters inspected * avg. cluster size

21

How to choose parameters?

• Goal: inspect 0.0001% of dataset
for 1B vectors ➔ 1000 points

• Back-of-the-envelope calculation:
• ~1000 points per cluster

• → need a million clusters

• Making this practical
• Build an index on centroids

• Standard solution
• Build a graph on top of the centroids

• Alternatives: hierarchical k-means

1% of dataset 0.01% of dataset

0.0001% of dataset🤔

22

IVF-based approaches

• Advantages
• Predictable index size and

relatively easy to understand
parameters

• Strong implementations available
• GPU-based solutions

• Disadvantages
• Many candidates necessary in the

high-recall regime
• Quantization necessary to limit

impact of these distance
computations

23

How to get started?

• Install via conda install -c pytorch faiss-cpu

24

Great documentation with code examples!
https://github.com/facebookresearch/faiss/wiki

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

index = faiss.index_factory(128, "PCA64,IVF16384_HNSW32,Flat")

Index factories available!

https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

Billion-Scale ANN with limited
resources

25

Interlude: Vector Quantization

26

Quantization techniques

🤔 Cluster with 1M centroids, using
HNSW to index the centroids

27

28

Basic idea

0.54
2.35
0.82
0.42

0.62
0.31
0.34
1.63

3.34
0.83
0.62
1.45

1 2 N ➢Need 4𝑁𝐷 byte to represent 𝑁 real-valued vectors
using floats

➢ If 𝑁 or 𝐷 is too large, we cannot read the data on memory
✓ E.g., 512 GB for 𝐷 = 128,𝑁 = 109

➢Convert each vector to a short-code

➢ Short-code is designed as memory-efficient
✓ E.g., 4 GB for the above example, with 32-bit code

➢Run search for short-codes

𝐷

1 2 N

co
d

e

co
d

e

co
d

e

Convert

…

…

29

Basic idea

0.54
2.35
0.82
0.42

0.62
0.31
0.34
1.63

3.34
0.83
0.62
1.45

1 2 N

…

➢Need 4𝑁𝐷 byte to represent 𝑁 real-valued vectors
using floats

➢ If 𝑁 or 𝐷 is too large, we cannot read the data on memory
✓ E.g., 512 GB for 𝐷 = 128,𝑁 = 109

➢Convert each vector to a short-code

➢ Short-code is designed as memory-efficient
✓ E.g., 4 GB for the above example, with 32-bit code

➢Run search for short-codes

𝐷

1 2 N

co
d

e

co
d

e

co
d

e

Convert

…

What kind of conversion is preferred?

1. The “distance” between two codes can be
calculated

2. The distance can be computed quickly

3. That distance approximates the distance
between the original vectors (e.g., 𝐿2)

4. Sufficiently small length of codes can achieve
the above three criteria

Quantization Techniques

• Low precision
• work with fp16 instead of 32/64 bit floats

• Scalar quantization
• split up [min,max] into 𝐾 equidistant parts

• (binary/locality-sensitive) Hashing
• Apply hashing to embed into lower dimensional space

• Product quantization

1
5
1
0

0.54
2.35
0.82
0.42min max

width

Interval [0,3] split up into 6 parts

30

31

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

vector; 𝒙

PQ-code; ഥ𝒙

Codebook

Product Quantization; PQ [Jégou+, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data

32

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou+, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

33

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou+, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

34

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

35

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

36

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

➢Simple
➢Memory efficient
➢Distance can be estimated

Product Quantization; PQ [Jégou, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

Bar notation for PQ-code:
𝒙 ∈ ℝ𝐷 ↦ ഥ𝒙 ∈ 1,… , 256 𝑀

37

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙

float: 32bit

38

e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙

float: 32bit

39

e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

e.g., 𝑀 = 8
8 × 8 = 64 [bit]

uchar: 8bit

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙

float: 32bit

40

e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

e.g., 𝑀 = 8
8 × 8 = 64 [bit]

1/64

uchar: 8bit

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙

Can store all 1B vectors with 8 GB of RAM!

41

Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

Product Quantization: Distance estimation

0.54
2.35
0.82
0.42
0.14
0.32

0.62
0.31
0.34
1.63
1.43
0.74

3.34
0.83
0.62
1.45
0.12
2.32

…

𝒙1 𝒙2 𝒙𝑁
Database vectors

42

Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

Product Quantization: Distance estimation

0.54
2.35
0.82
0.42
0.14
0.32

0.62
0.31
0.34
1.63
1.43
0.74

3.34
0.83
0.62
1.45
0.12
2.32

…

Product
quantization

𝒙1 𝒙2 𝒙𝑁
Database vectors

43

Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

…
ID: 42

ID: 67

ID: 92

ID: 221

ID: 143

ID: 34

ID: 99

ID: 234

ID: 3

Product Quantization: Distance estimation

𝒙1 𝒙2 𝒙𝑁

𝒙1 ∈ 1,… , 256 𝑀

44

Query; 𝒒 ∈ ℝ𝐷

➢ 𝑑 𝒒, 𝒙 2 can be efficiently approximated by 𝑑𝐴 𝒒, ഥ𝒙 2

➢ Lookup-trick: Looking up pre-computed distance-tables
➢ Candidate selection by 𝑑𝐴

0.34
0.22
0.68
1.02
0.03
0.71

Linear
Scan
Through
Candidates

…
ID: 42

ID: 67

ID: 92

ID: 221

ID: 143

ID: 34

ID: 99

ID: 234

ID: 3

Product Quantization: Distance estimation

𝒙1 𝒙2 𝒙𝑁

Asymmetric distance

𝒙1 ∈ 1,… , 256 𝑀

45

➢ Only tens of lines in Python
➢ Pure Python library: nanopq https://github.com/matsui528/nanopq
➢ pip install nanopq

Not pseudo codes

https://github.com/matsui528/nanopq

Cluster with 1M centroids, using
HNSW to index the centroids

- Compress vector into 128
blocks,

- each with 2^4 = 16
codewords,

- use SIMD-based
asymmetric distance
computation [Andre+17]

Rotate vectors to allow for
better product quantization

[Ge+14]

46

The ANN search pipeline

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate
selection

𝒙13
𝒙91

Scan
candidates

0.20
3.25
0.72
1.68

𝒙74
𝒙′1, 𝒙′2, … , 𝒙′𝑳~milliseconds

~several hours

47

The ANN search pipeline (with quantization)

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate
selection

𝒙13
𝒙91

Scan
candidates

by code

0.20
3.25
0.72
1.68
𝒙74

ഥ𝒙′1, , … , ഥ𝒙𝑲
′

~milliseconds

~several hours

Rerank with
true vectors

Typically 10-100x more quantized vectors than target
48

Index on Quantized Vectors

• Learn codes, represent each vector
by its PQ code

• Code size: 32-64 byte
• Can store the compressed vectors in

memory
• Lookup tables in cache/avx registers

• Index cost on top
• Graph: 1G * degree_bound

• Typically requires small degree_bounds
(not well studied?)

• IVF: 1M centroids + index on
centroids on top of vectors
• Usually works well

49

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

Recall quality very data dependent!

Metric: Inner Product

w/o re-ranking

w/ re-ranking

SCANN: Guo+, ICML 2020.

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

Out-of-Memory index + High-Recall (DiskANN)

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

K-means (k=40)
Assign each vector

to its closest 2
centroids

in-memory

Out-of-memory

M
e

rge
 an

d
 sto

re
 o

n
 SSD

50

DiskANN out-of-memory

ID: 42

ID: 67

ID: 92

ഥ𝒙𝑖

RAM

SSD

𝑅 = 128 degree

𝒙𝒊 𝒚𝟏 𝒚𝑹

Original vector Neighbor indices,
Padded if < 𝑅 neighbors

Expanding a node:
1. Read adjacent nodes from SSD

(+ fetch original vector “for free”)
2. Compute distances of query to neighbors

(using PQ codes)

~32byte
/vector

Still serves 1k+ queries per second

1 block read from SSD

32+ GB

dataset size
+ 512 GB graph

51

Memory layout for vector 𝑥𝑖

(Very) recent developments

52

A new graph approach?

• Hierarchical tree, leaves are HNSW
graphs

• Interesting quantization technique
motivated by time series

• Better build times, good query
performance

To appear at VLDB 2023,
https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

53

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

Automated Parameter tuning

• Finding build/search parameters
by constrained optimization

• Build on top of ScaNN

54

ICLR23

Filtered search

• Setting
• Vectors have

associated metadata

• Example, YFCC: tags,
gps, date

• Query
• Find the most similar

images to this images
that were taken with a
Sony Camera in 2017
in Vancouver

55

Out-of-distribution queries

• Setting
• Vectors are image embeddings

• Queries are text embeddings

56

OPQ64_128,IVF16384,PQ64

Yandex, Text-2-Image dataset
https://arxiv.org/pdf/2301.01702.pdf

https://arxiv.org/pdf/2301.01702.pdf

Streaming settings

• Setting
• Many applications (search

engine, recommender
system) need to handle
updates

• Daily rebuilds often too
expensive

• Question: Clever update
strategies?

57

https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx

https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx

NeurIPS 2023 Challenge: Practical Vector Search

• 4 Tasks (10M vectors)
• Filtered ANN

• Streaming ANN

• Out-of-distribution ANN

• ANN on sparse data

• Strong baselines based on IVF
(faiss) and graphs (DiskANN)

• Cloud credits available for
testing (screening process)

https://big-ann-benchmarks.com

Official
announcement

soon!

Timeframe: July-November 2023
58

Thanks!

https://big-ann-benchmarks.com

https://matsui528.github.io/cvpr2023_tutorial_neural_search/

Berlin · Beijing · Shenzhen

Representing,
transiting &
searching
multimodal data

Han Xiao, Founder of Jina AI
 @hxiao @JinaAI_

Neural Search in Action

https://twitter.com/hxiao

About me & Jina AI
Han Xiao, Founder & CEO of Jina AI. Based in Berlin, Germany.

- ML PhD in 2014 TU Munich; Zalando Research; Tencent AI Lab; Creator
of Fashion-MNIST.

Jina AI

- Founded in 2020, focus on multimodal AI search & create
- Opensource contributor: Jina, DocArray (Linux Foundation),

CLIP-as-service, …
- 60 people, HQ in Berlin. Offices in Beijing, Shenzhen.

Jina AI Tech Spectrum

Prompt tuning

Prompt serving

Model tuning

Model serving

the deployment of fine-tuned models in a
production environment, usually requiring
substantial resources such as GPU hosting.
MLOps, emphasizing the serving of mid-size to
large models in a scalable, efficient, and reliable
manner.

the process of crafting and refining the input
prompts in order to guide its output towards
specific, desired responses.

wrapping and serving prompts through an API,
without hosting heavy models. The API calls a
public large language model service and handles
the orchestration of inputs and outputs in a chain
of operations.

Also known as fine-tuning, involves adjusting the
parameters of a pre-trained model on a new,
often task-specific dataset to improve its
performance and adapt it to a specific
application.

Prompt tuning

Prompt serving

Model tuning

Model serving

PromptPerfect

Finetuner

Inference API
Jina+DocArray

Jcloud

OpenGPT
CLIP-as-service

DiscoArt

DevGPT

ThinkGPT

DalleFlow

DocsQA

AgentChain

Rationale

SceneX

Ensemble
ArtiBanner

LLMSearch

LC-serve

Faster time2market

Long-term invest

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

Preliminary:
from unimodal to multimodal

Cross-modal

Creative AI

Neural search

Multimodal

Unimodal AI

Before 2021

2022

Future

From unimodal to multimodal

 "modality" roughly means "data type".

- Unimodal AI refers to applying AI to one specific type of data.
- Most early machine learning works fall into this category.
- Even today, when you open any machine learning literature,

unimodal AI is still the majority of the content.

Unimodal - NLP
LDA was the 2010's transformer

Unimodal tasks in NLP
Adhoc methods for NLP problems

Unimodal - CV
Fashion-MNIST, 2017

Unimodal tasks in CV

Unimodal tasks in speech & audio

Unimodal know-how are hardly transferable

● Tasks are specific to just one modality (e.g.

textual, visual, acoustic, etc).

● Knowledge is learned from and applied to

only one modality (i.e. a visual algorithm can

only learn from and be applied to images).

A detour: cross-modal model
NIPS 2010, Cross-LDA

Erase the boundary between modalities

- Tasks are shared and transferred between multiple modalities (so
one algorithm can work with images and text and audio).

- Knowledge is learned from and applied to multiple modalities (so an
algorithm can learn from textual data and apply that to visual data).

Paradigm shift from unimodal to multimodal

The rise of multimodal AI can be attributed to advances in two machine
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations
for all modalities.

- Transfer learning lets models first learn fundamental knowledge, and
then fine-tune on specific domains.

CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more AI
applications move beyond
one data modality and
leverage relationships
between different modalities

“An artificial intelligence system
trained on words and sentences

alone will never approximate
human understanding.”

Y. Lecun in 2022 in AI And The Limits Of Language

Multimodal AI is the future,
but the ML ecosystem is not yet

suited for it.

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

DocArray for
representing, transiting,

storing, searching
multimodal data

Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to
work with multiple modalities at the same time.

- No easy way to represent unstructured and nested multimodal data.

Storage

Audio

Image

Video

Text

3D mesh

ComputePreprocess

…
……

…

Lack of common interface

● Unstructured

document

● Nested content

● Different modalities
(text, image, …)

No easy way to represent
unstructured nested multimodal data

DocArray way of representing multimodal
data

Frequent data transfer over network is
expensive

Multimodal data is processed by multiple models and models are usually deployed in a
distributed way.

Performant serialization is important
DocArray is designed to be “ready-to-wire” at anytime.

Binary serialization optimized for in-transit &
at-rest

Binary serialization optimized for in-transit &
at-rest

Storing nested data with databases is
complicated

- Complex and nested schema are not directly supported in
databases

- Explosion in numbers of vector databases with different APIs but no
universal client

DocArray way of storing data

DocArray way of storing data

Vector Search via a consistent API

Vector Search via a consistent API

Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.

Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.

Hands-on DocArray

Install DocArray
To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/

Representing data - Document
At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a BannerDoc class that can be used to represent the data of a website banner:

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing data - Document

Representing multimodal data with nested
structure
Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube
videos.

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's
keep it simple).

All of these elements are from different modalities:

the title and description are text,

the thumbnail is an image,

and the video itself is, well, a video.

DocArray lets you represent all of this multimodal data
in a single object.

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another
BaseDoc`. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data
hierarchy.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing multimodal data with nested
structure

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another
BaseDoc`. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data
hierarchy.

This representation can be used to send or
store data. You can even use it directly to
train a machine learning Pytorch model on
this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html

Recap: representing multimodal data
- "Dataclass" look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types

- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D

- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding

- Optional[]

Representing an array of multimodal data
The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single
datapoint.

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

● DocList which is a Python list of BaseDocs
● DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Example of DocList

Example of DocList

Example of DocList
DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.

Example of DocList

Accessing member attribute at array level

Accessing member attribute at array level

DocList[DocType] syntax
DocList[DocType] creates a custom DocList that can only contain DocType
Documents.

Non-typing DocList for
heterogeneous data

Strong-typing DocList for
homogeneous data

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList

DocList vs DocVec
DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually
owned by each BaseDoc collect just different Document references.

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying
the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

DocList vs DocVec
Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

...

DocList vs DocVec

DocList vs DocVec

embed

embed

DocList vs DocVec

Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to
access the data.

Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to
access the data.

you should use DocVec when you need to work with
contiguous data, and you should use DocList when
you need to rearrange or extend your data.

Storing & retrieving via Vector Database

Storing & retrieving via Vector Database

Document Index: ORM for vector DBs
Document Index provides a unified interface to a number of vector databases.

You can think of Document Index as an ORM for vector databases.

Currently, DocArray supports the following vector databases:

● Weaviate | Docs
● Qdrant | Docs
● Elasticsearch v7 and v8 | Docs
● HNSWlib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

Most vector databases need to know the
dimensionality of the vectors that will be stored.
Here, that is automatically inferred from the type hint
of the embedding field: NdArray[128] means that the
database will store vectors with 128 dimensions.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Index data

Index data

As you can see, DocList[MyDoc] and
HnswDocumentIndex[MyDoc] are both
parameterized with MyDoc. This means
that they share the same schema, and in
general, the schema of a Document
Index and the data that you want to
store need to have compatible schemas

Vector search

Vector search

Vector search

Vector search

Hybrid search through the query builder
Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible
through build_query():

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query

Customize vector DB configuration

Indexing and
searching
multimodal data
In the following example you can see a
complex schema that contains nested
Documents. The YouTubeVideoDoc contains a
VideoDoc and an ImageDoc, alongside some
"basic" fields:

Indexing and searching multimodal data
You can perform search on any nesting level by using the dunder operator to specify the field defined in the
nested data.

Nested DocList with
subindex
Documents can be nested by containing a DocList of other
documents, which is a slightly more complicated scenario
than the previous one.

In this case, the nested DocList will be represented as a new
sub-index (or table, collection, etc., depending on the
database backend), that is linked with the parent index
(table, collection, ...).

Search by subindex

Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

An end to end example

https://docs.docarray.org/how_to/multimodal_training_and_serving/

https://docs.docarray.org/how_to/multimodal_training_and_serving/

Berlin · Beijing · Shenzhen

Thanks for
your
attention

jina.ai
@JinaAI_
han.xiao@jina.ai

	0_opening
	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8

	1_graph
	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58
	スライド 59
	スライド 60
	スライド 61
	スライド 62
	スライド 63
	スライド 64
	スライド 65
	スライド 66
	スライド 67
	スライド 68
	スライド 69
	スライド 70
	スライド 71
	スライド 72
	スライド 73
	スライド 74
	スライド 75
	スライド 76
	スライド 77
	スライド 78
	スライド 79
	スライド 80
	スライド 81
	スライド 82
	スライド 83
	スライド 84
	スライド 85
	スライド 86
	スライド 87
	スライド 88
	スライド 89
	スライド 90
	スライド 91
	スライド 92
	スライド 93
	スライド 94
	スライド 95
	スライド 96
	スライド 97
	スライド 98
	スライド 99
	スライド 100
	スライド 101
	スライド 102
	スライド 103
	スライド 104
	スライド 105
	スライド 106
	スライド 107
	スライド 108
	スライド 109
	スライド 110
	スライド 111
	スライド 112
	スライド 113
	スライド 114
	スライド 115
	スライド 116
	スライド 117
	スライド 118
	スライド 119
	スライド 120
	スライド 121
	スライド 122
	スライド 123
	スライド 124
	スライド 125
	スライド 126
	スライド 127
	スライド 128
	スライド 129
	スライド 130
	スライド 131
	スライド 132
	スライド 133
	スライド 134
	スライド 135
	スライド 136
	スライド 137
	スライド 138
	スライド 139
	スライド 140
	スライド 141
	スライド 142
	スライド 143
	スライド 144
	スライド 145
	スライド 146
	スライド 147
	スライド 148
	スライド 149
	スライド 150
	スライド 151
	スライド 152
	スライド 153
	スライド 154
	スライド 155
	スライド 156
	スライド 157
	スライド 158
	スライド 159
	スライド 160
	スライド 161
	スライド 162
	スライド 163

	billion_scale_ann
	Slide 1: Billion-Scale Nearest Neighbor Search
	Slide 2
	Slide 3: From Million-Scale to Billion-Scale ANN
	Slide 4: From Million-Scale to Billion-Scale ANN
	Slide 5: Billion-Scale ANN Challenge [Simhadri+, NeurIPS 2021]
	Slide 6: The ANN search pipeline
	Slide 7: <tl;dnl> (Roadmap)
	Slide 8: Billion-Scale Datasets
	Slide 9: High Resources, High Recall
	Slide 10: Scaling Graph-Based Approaches
	Slide 11: Scaling Graph-Based Approaches
	Slide 12: Parallelizing insertion
	Slide 13: Understanding parameters
	Slide 14: Build times & scaling
	Slide 15: Parallelizing search
	Slide 16: Summary
	Slide 17: How to get started (DiskANN)
	Slide 18: High Resources, Low Recall
	Slide 19: IVF-based solutions (“inverted file index”)
	Slide 20: IVF: insert a vector
	Slide 21: IVF: search
	Slide 22: How to choose parameters?
	Slide 23: IVF-based approaches
	Slide 24: How to get started?
	Slide 25: Billion-Scale ANN with limited resources
	Slide 26: Interlude: Vector Quantization
	Slide 27: Quantization techniques
	Slide 28
	Slide 29
	Slide 30: Quantization Techniques
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: The ANN search pipeline
	Slide 48: The ANN search pipeline (with quantization)
	Slide 49: Index on Quantized Vectors
	Slide 50: Out-of-Memory index + High-Recall (DiskANN)
	Slide 51: DiskANN out-of-memory
	Slide 52: (Very) recent developments
	Slide 53: A new graph approach?
	Slide 54: Automated Parameter tuning
	Slide 55: Filtered search
	Slide 56: Out-of-distribution queries
	Slide 57: Streaming settings
	Slide 58: NeurIPS 2023 Challenge: Practical Vector Search
	Slide 59

	CVPR2023 Tutorial_ Neural Search in Action - Representing, transiting & searching multimodal data, Han Xiao

