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Yusuke Matsui

✓ Image retrieval
✓ Large-scale indexing

http://yusukematsui.me

Lecturer (Assistant Professor), the University of Tokyo, Japan
@utokyo_bunny

ARM 4-bit PQ [Matsui+, ICASSP 22]
Image Retrieval in the Wild
[Matsui+, CVPR 20, tutorial]

@matsui528
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Martin Aumüller

✔ Similarity search using hashing
✔ Benchmarking & workload generation

http://itu.dk/people/maau

Associate Professor, IT University of Copenhagen, Denmark
@maumueller

PUFFINN 
[Aumüller+, ESA 2019]

Billion-Scale ANN Challenge
[Aumüller+, NeurIPS 21, Competition]
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Han Xiao

✔ Multimodal search & generation
✔ Model tuning & serving; prompt tuning 

& serving

https://jina.ai

Founder & CEO of Jina AI
@hxiao
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Example: Multimodal Search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs 
playing in 
the snow”

…

Search

Images

✓

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling gold at 
the 2022 Winter Olympics?"

“Niklas Edin, Oskar 
Eriksson, …”

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”

…

“Chinami Yoshida¥n¥n==Personal…”

“2022 Olympics medal winners…”

+

Example: LLM + embedding

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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Target audiences
➢ Those who want to try Neural Search
➢ Those who have tried Neural Search but would like to 

know more about the algorithm in depth

Our talk
➢ Million-scale search (Yusuke)
➢ Billion-scale search (Martin)
➢ Query language (Han)
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Time Session Presenter
13:30 – 13:40 Opening Yusuke Matsui

13:40 – 14:30 Theory and Applications of Graph-based Search Yusuke Matsui

14:30 – 15:20 A Survey on Approximate Nearest Neighbors in a 
Billion-Scale Settings

Martin Aumüller

15:20 – 15:30 Break

15:30 – 16:20 Query Language for Neural Search in Practical 
Applications

Han Xiao

Schedule
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Theory and Applications of 

Graph-based Search

Yusuke Matsui
The University of Tokyo

CVPR 2023 Tutorial on Neural Search in Action
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✓ Image retrieval

✓ Large-scale indexing

http://yusukematsui.me

Lecturer (Assistant Professor), the University of Tokyo, Japan

@utokyo_bunny

ARM 4-bit PQ [Matsui+, ICASSP 22]
Image Retrieval in the Wild

[Matsui+, CVPR 20, tutorial]

@matsui528
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Search 𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

5

➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

Nearest Neighbor Search; NN



0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

𝒒 ∈ ℝ𝐷 𝒙74

argmin
𝑛∈ 1,2,…,𝑁

𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷
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➢𝑁 𝐷-dim database vectors: 𝒙𝑛 𝑛=1
𝑁

➢Given a query 𝒒, find the closest vector from the database
➢One of the fundamental problems in computer science
➢Solution: linear scan, 𝑂 𝑁𝐷 , slow 

Nearest Neighbor Search; NN

Often, argmax + inner product is also considered. 
Don’t care in this talk. 
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Result

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Approximate Nearest Neighbor Search; ANN

➢Faster search
➢Don’t necessarily have to be exact neighbors
➢Trade off: runtime, accuracy, and memory-consumption
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➢ In this talk, suppose: 𝑁 < 109 
➢ All data can be loaded on memory
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Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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Real-world use cases 1: multimodal search
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Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash
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1.43

Search
𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

“Two dogs playing 
in the snow”

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral


14

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing 
in the snow”

0.23
3.15
0.65
1.43

Search

0.20
3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral


15

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

“Two dogs playing 
in the snow”

0.23
3.15
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1.43

Search
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3.25
0.72
1.68

argmin 𝒒 − 𝒙𝑛 2
2

Result

𝒙1, 𝒙2, … , 𝒙𝑁

CLIP Text
Encoder

…

CLIP Image
Encoder

➢ Encoder determines the upper bound of the accuracy of the system
➢ ANN determines a trade-off between accuracy, runtime, and memory

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
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Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT


17

Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

"Who won curling 
gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“I'm sorry, but as an AI language 
model, I don't have information 
about the future events.”

Ask



https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
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Real-world use cases 2: LLM + embedding

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT
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gold at the 2022 
Winter Olympics?"

ChatGPT 3.5 
(trained in 2021)

“Damir Sharipzyanov¥n¥n=Career…”

“Lviv bid for the 2022 Winter…”…
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Real-world use cases 2: LLM + embedding
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Real-world use cases 2: LLM + embedding
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Real-world use cases 2: LLM + embedding
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Real-world use cases 2: LLM + embedding
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Real-world use cases 2: LLM + embedding
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ChatGPT 3.5 
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“Lviv bid for the 2022 Winter…”…
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Real-world use cases 2: LLM + embedding
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Vector DB???
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Three levels of technology

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jina
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➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Weaviate

Vertex AI 
Matching Engine

NMSLIB

hnswlib
Vald

ScaNN

jina

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

One library may implement 
multiple algorithms

 “I benchmarked faiss”
☺ “I benchmarked PQ in faiss”
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Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Weaviate

Vertex AI 
Matching Engine

Vald

ScaNN

jina

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

faiss

NMSLIB

hnswlib

One algorithm may be 
implemented in multiple libraries
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Milvus

Pinecone

Qdrant

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

jina

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

ScaNN

Often, one library = one algorithm
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Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Vertex AI 
Matching Engine

NMSLIB

Vald

ScaNN

jina

Weaviate

Milvus

faiss

hnswlib

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

One service may use some libraries

… or re-implement 
algorithms from 
scratch (e.g., by Go)
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Three levels of technology

Milvus

Pinecone

Qdrant

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Algorithm
➢ Scientific paper
➢ Math
➢ Often, by researchers

Library
➢ Implementations of algorithms
➢ Usually, a search function only
➢ By researchers, developers, etc

Service (e.g., vector DB)
➢ Library +  (handling metadata, 

serving, scaling, IO, CRUD, etc)
➢ Usually, by companies

Product Quantization + 
Inverted Index (PQ, IVFPQ)

[Jégou+, TPAMI 2011]

Hierarchical Navigable 
Small World (HNSW)

[Malkov+, TPAMI 2019]

Weaviate

Vertex AI 
Matching Engine

faiss

NMSLIB

hnswlib
Vald

ScaNN

jinaThis talk mainly focuses algorithms
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For raw data: Acc. ☺, Memory:  For compressed data: Acc. , Memory: ☺
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For raw data: Acc. ☺, Memory:  For compressed data: Acc. , Memory: ☺

Today’s my topic
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➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by 
Asymmetric Distance

…

Linear-scan by 
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory:  For compressed data: Acc. , Memory: ☺See my previous 
tutorial at CVPR20

https://speakerdeck.com/matsui_528/cvpr
20-tutorial-billion-scale-approximate-
nearest-neighbor-search

Today’s my topic

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
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Space partition Data compression

➢ k-means
➢ PQ/OPQ
➢ Graph traversal
➢ etc…

➢ Raw data
➢ Scalar quantization
➢ PQ/OPQ
➢ etc…

Look-up-based

Hamming-based

Linear-scan by 
Asymmetric Distance

…

Linear-scan by 
Hamming distance

Inverted index + data compression

For raw data: Acc. ☺, Memory:  For compressed data: Acc. , Memory: ☺See my previous 
tutorial at CVPR20

https://speakerdeck.com/matsui_528/cvpr
20-tutorial-billion-scale-approximate-
nearest-neighbor-search

See Martin’s next 
presentation!

Today’s my topic
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Graph search

➢ De facto standard if all data can be loaded on memory
➢ Fast and accurate for real-world data
➢ Important for billion-scale situation as well
✓ Graph-search is a building block for billion-scale systems

Images are from [Malkov+, Information Systems, 2013]

➢ Traverse graph towards the query
➢ Seems intuitive, but not so much 

easy to understand
➢ Review the algorithm carefully
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Graph search

➢ De facto standard if all data can be loaded on memory
➢ Fast and accurate for real-world data
➢ Important for billion-scale situation as well
✓ Graph-search is a building block for billion-scale systems

Images are from [Malkov+, Information Systems, 2013]

➢ Traverse graph towards the query
➢ Seems intuitive, but not so much 

easy to understand
➢ Review the algorithm carefully

The purpose of this tutorial is to make 
graph search not a black box
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Images are from [Malkov+, Information Systems, 2013]

➢Each node is a database vector

𝒙13

Graph of 
𝒙1, … , 𝒙90

Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, 

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach



47

➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach
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➢Each node is a database vector
➢Given a new database vector, create new edges to neighbors

𝒙13

𝒙91

Graph of 
𝒙1, … , 𝒙90

Images are from [Malkov+, Information Systems, 2013]Construction: incremental approach

➢ Prune edges if some node have too many edges
➢ Several strategies (e.g., RNG-pruning)
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Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NeruIPS 2019]

Increment approach Refinement approach
➢ Add a new item to the current 

graph incrementally
➢ Iteratively refine an initial graph
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Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)
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Construction: refinement approach Images are from [Subramanya+, NeruIPS 2019]

➢ Create an initial graph (e.g., random graph or approx. kNN graph)
➢ Refine it iteratively (pruning/adding edges)

➢Need to be moderately sparse (otherwise the 
graph traverse is slow)

➢ Some “long” edges are required for shortcut
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Search Images are from [Malkov+, Information Systems, 2013]
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N M

➢ Given a query vector

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Name each node for 
explanation
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ Given a query vector
➢ Start from an entry point (e.g.,      )
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e q

u
ery

M



54

Search Images are from [Malkov+, Information Systems, 2013]
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➢ Given a query vector
➢ Start from an entry point (e.g.,      ). Record the distance to q.
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M

M 23.1



55

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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1st iteration
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

23.1

Best

➢ Pick up the unchecked best candidate (     ). Check it. 
➢ Find the connected points.

Best

M

M

check!



60

Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

23.1

Best

➢ Pick up the unchecked best candidate (     ). Check it. 
➢ Find the connected points.
➢ Record the distances to q.

N

M

M

check!



61

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

Best

➢ Pick up the unchecked best candidate (     ). Check it. 
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

N

M

J 11.1

N 15.3

K 19.4



65

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

B 2.3

G 3.5

I 9.7

Best

Best

➢ Pick up the unchecked best candidate (     ). Check it.B

check!



79

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (     ). Check it.
➢ Find the connected points.

C

Best
Best

check!



90

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]

A

B

C

D

E

F

G

H

I

J

K

L

N M

Candidates
(size = 3)

C
lo

se
 to

 th
e q

u
ery

N

C 0.5

D 2.1

B 2.3

➢ Pick up the unchecked best candidate (     ). Check it.
➢ Find the connected points.
➢ Record the distances to q.
➢ Maintain the candidates (size=3)

C

Best



92

Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ All candidates are checked. Finish.
➢ Here,      is the closet to the query (     )C
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Search Images are from [Malkov+, Information Systems, 2013]
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Final output 1: Candidates
➢ You can pick up topk results

➢ All candidates are checked. Finish.
➢ Here,      is the closet to the query (     )



104

Search Images are from [Malkov+, Information Systems, 2013]
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Final output 1: Candidates
➢ You can pick up topk results

➢ All candidates are checked. Finish.
➢ Here,      is the closet to the query (     )Final output 2: Checked items
➢ i.e., search path
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Search Images are from [Malkov+, Information Systems, 2013]
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➢ All candidates are checked. Finish.
➢ Here,      is the closet to the query (     )C

Final output 1: Candidates
➢ You can pick up topk results

Final output 2: Checked items
➢ i.e., search path

Final output 3: Visit flag
➢ For each item, visited or not 
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷 

𝒙13 ∈ ℝ𝐷 

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4
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Observation: runtime

➢ Item comparison takes time; 𝑂 𝐷

➢ The overall runtime ~ #item_comparison
∼ length_of_search_path * average_outdegree

𝒒 ∈ ℝ𝐷 

𝒙13 ∈ ℝ𝐷 

start

query

start

query

start

query

1st path 2nd path 3rd path

2.1

1.9

outdegree = 1 outdegree = 2 outdegree = 2

#item_comparison = 3 * (1 + 2 + 2)/3 = 5

2.4

To accelerate the search,
(1) How to shorten the search path?
➢ E.g., long edge (shortcut), hierarchical structure 

(2) How to sparsify the graph?
➢ E.g., deleting redundant edges
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A

D

C

B

query

Observation: candidate size

E

start
Candidates
(size = 1)

C

A

D

C

B

query

E

start
Candidates
(size = 3)

C

D

E

size = 1: Greedy search size > 1: Beam search

➢ Larger candidate size, better but slower results
➢ Online parameter to control the trade-off
➢ Called “ef” in HNSW 

Fast. But stuck in a local minimum

Slow. But find a better solution
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Sort the array explicitly

Candidates are stored 
in a set

Candidates are stored in a 
heap; automatically sorted

Candidates are stored 
in an array

When need to sort, 
say “closest L points”
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Just “check” Checked items are stored in a set (“visit” in 
this code means “check” in our notation)
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Visited item are simply said to be “visited”; implying 
an additional hidden data structure (array)

Visited items are 
stored in a set
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Termination condition??
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small details are different.
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

My explanation was based on NSG, but with slight modifications for simplicity:
➢ Candidates are stored in an automatically-sorted array
➢ Termination condition is “all candidates are checked”
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Pseudo code

➢ All papers have totally different pseudo code 
➢ Principles are the same. But small parts are very different
➢ Hint: Explicitly state the data structure or not

NSG [Cong+, VLDB 19]

DiskANN [Subramanya+, NeurIPS 19]
Learning to route [Baranchuk+, ICML 19]

Formal (?) definition would be helpful for everyone 
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Principal: 
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Famous Delaunay graph
☺ Always reaches the correct answer
 Almost fully connected when 𝐷 is large

Principal: 
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Relative Neighborhood Graph (RNG) [Toussaint, PR 80]
➢ Consider 𝑥 and 𝑦. There must be no points in the “lune”
➢ Can cut off redundant edges
➢ Not famous in general, but widely used in ANN
➢ Will review again later

Principal: 
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

K Nearest Neighbor Graph
☺ Can limit the number of neighbor (K at most), enforcing a sparsity
 No guaranty for the connectivity

Principal: 
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable
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Base graph

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Although there are many graph algorithms, there exists four base graphs.
➢ These base graphs are (1) slow to be constructed, and (2) often too dense
➢ Each algorithm often improves one of the base graphs

Minimum Spanning Tree (MST)
☺ Ensure the global connectivity. Low degree.
 Lack of shortcuts

Principal: 
➢ Not too dense: Search is slow for dense graph
➢ But moderately dense: Each points should be reachable
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Graph search algorithms

Images are from an excellent survey paper [Wang+, VLDB 2021]

➢ Lots of algorithms 
➢ The basic structure is same: (1) designing a good graph + (2) beam search
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The initial seed matters

Start here? Start here?

v.s.

➢ Starting from a good seed ➡ Shorter path ➡ Faster search

➢ Finding a good seed is also an ANN problem
➢ Solve a small ANN problem by tree [NST; Iwasaki+, arXiv 18], 

hash [Effana; Fu+, arXiv 16] or LSH [LGTM; Arai+, DEXA 21]
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Edge selection: RNG-pruning

A

When inserting A, 
where to edge?

A

All 
neighbors?

➢ Too many edges
➢ Slow for search

A
Top-K?

➢ Not reachable
➢ Low accuracy.

A

 ☺
Probably 
connected

So we don’t 
need this

RNG-pruning: Moderate 
number of edges
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CB
D

A

Given A, make edges to 
B, C, D, and E?

?
?

?
E

Edge selection: RNG-pruning
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CB
D

A

E

Edge selection: RNG-pruning
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B
D

A

Find the nearest one to A

C E

Edge selection: RNG-pruning
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CB
D

A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

Find the nearest one to A

E

Edge selection: RNG-pruning



131

CB
D

A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

Find the nearest one to A

This time, there are no neighbors. So let’s make an edge

E

Edge selection: RNG-pruning
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CB
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A

done
E

Edge selection: RNG-pruning
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CB
D

A

Find the 2nd nearest one to A

done
E

Edge selection: RNG-pruning
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CB
D

A

Find the 2nd nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

done
E

Edge selection: RNG-pruning



Edge selection: RNG-pruning
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CB
D

A

Find the 2nd nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

done

Shortest! Not make an edge

E
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Edge selection: RNG-pruning



Edge selection: RNG-pruning

137

CB
D

A

done
done

Find the 3rd nearest one to A

E



Edge selection: RNG-pruning
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CB
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A

done
done

Find the 3rd nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

E



Edge selection: RNG-pruning
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done
done

Find the 3rd nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

Shortest! Make an edge

E
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Edge selection: RNG-pruning



Edge selection: RNG-pruning
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done

E

Find the 4th nearest one to A



Edge selection: RNG-pruning

142

CB
D

A

done
done

done

E

Find the 4th nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      



Edge selection: RNG-pruning
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CB
D

A

done
done

done

E

Find the 4th nearest one to A

➢ For all neighbors of A, compare      and       
➢ If        is the shortest, make an edge      

Shortest! Not make an edge
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done

E
done

Edge selection: RNG-pruning
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CB
D

A

done
done

done

E
done

➢ RNG-pruning is an effective edge-pruning technique, 
and used in several algorithms

Pros: Implementation is easy
Cons: Require many distance computations

Edge selection: RNG-pruning
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Hierarchical Navigable Small World; HNSW

[Malkov and Yashunin, TPAMI, 2019]

➢ Construct the graph hierarchically [Malkov and Yashunin, TPAMI, 2019]

➢ Fix #edge per node by RNG-pruning
➢ The most famous algorithm; works very well in real world

Search on a coarse graph

Move to the same node on a 
finer graph

Repeat
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➢ Used in various services
✓ milvus, weaviate, qdrant, vearch, elasticsearch, 

OpenSearch, vespa, redis, Lucene…

➢ Three famous implementations
✓ NMSLIB (the original implementation)
✓ hnswlib (light-weight implementation from NMSLIB)
✓ Faiss (re-implemented version by the faiss team)

Hierarchical Navigable Small World; HNSW

[NMSLIB] https://github.com/nmslib/nmslib
[hnswlib] https://github.com/nmslib/hnswlib
[Faiss] https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib
https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h
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https://www.facebook.com/groups/faissusers/posts/917143142043306/?comment_id=917533385337615&reply_comment_id=920542105036743

Any implementation difference between NMSLIB, 
hnswlib, and faiss-hnsw? 

My view on the implementation differences (I might forgot something): 

1) nmslib’s HNSW requires internal index conversion step (from nmslib’s format to an internal one) to have good performance, and after the 
conversion the index cannot be updated with new elements. nmslib also has a simple "graph diversification" postprocessing after building the 
index (controlled by the "post" parameter) and sophisticated queue optimizations which makes it a bit faster compared to other 
implementations. Another advantage of nmslib is out-of-the box support for large collection of distance functions, including some exotic 
distances.

2) hnswlib is a header-only C++ library reimplementation of nmslib's hnsw. It does not have the index conversion step, thus - the Pros 
(compared to nmslib): much more memory efficient and faster at build time. It also supports index insertions, element updates (with 
incremental graph rewiring - added recently) and fake deletions (mark elements as deleted to avoid returning them during the graph traversal). 
Cons (compared to nnmslib): It is a tad slower than nmslib due to lack of graph postprocessing and queue optimization; out-of-the box version 
supports only 3 distance functions, compared to many distance functions in nmslib. Overall, I've tried to keep hnswlib as close as possible to a 
distributed index (hence no index postprocessing).

3) Faiss hnsw is a different reimplementation. It has its own algorithmic features, like having the first elements in the upper layers on the
structure (opposed to random in other implementations). It is a bit more memory efficient compared to hnswlib with raw vectors and 
optimized for batch processing. Due to the latter it is noticeably slower at single query processing (opposed to nmslib or hnswlib) and 
generally a bit slower for batch queries (the last time I’ve tested, but there were exceptions). The implementation also supports incremental 
insertions (also preferably batched), quantized data and two-level encoding, which makes it much less memory hungry and the overall best 
when memory is a big concern.

Yury Malkov
(the author of 
HNSW paper)

Discussion from Faiss User Forum in FB
Note that this discussion was in 2020 and the libraries have been updated a lot since then
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➢ See the following excellent blog posts for more details

https://www.pinecone.io/learn/hnsw/
James Briggs, PINECONE, Faiss: The 
Missing Manual, 6. Hierarchical 
Navigable Small Worlds (HNSW)

Hierarchical Navigable Small World; HNSW

https://zilliz.com/blog/hierarchical-
navigable-small-worlds-HNSW
Frank Liu, zilliz, Vector Database 101, 
Hierarchical Navigable Small Worlds 
(HNSW)

https://towardsdatascience.com
/ivfpq-hnsw-for-billion-scale-
similarity-search-89ff2f89d90e
Peggy Chang, IVFPQ + HNSW for 
Billion-scale Similarity Search

https://www.pinecone.io/learn/hnsw/
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
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Navigating Spreading-out Graph (NSG)
➢ Monotonic RNG
➢ In some cases, slightly better than HNSW
➢ Used in Alibaba’s Taobao

RNG Monotonic RNG

➢ Recall the def. of RNG is “no point in a lune”
➢ The path “p -> q” is ling Monotonic RNG can 

make more edges

[Fu+, VLDB 19]

Images are from 
[Fu+, VLDB 19]
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Navigating Spreading-out Graph (NSG)
➢ The original implementation:

➢ Implemented in faiss as well
➢ If you’re using faiss-hnsw and need a little bit more 

performance with the same interface, worth trying NSG

https://github.com/ZJULearning/nsg 

IndexHNSWFlat(int d, int M, MetricType metric)
IndexNSGFlat(int d, int R, MetricType metric)

[Fu+, VLDB 19]

https://github.com/ZJULearning/nsg
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Neighborhood Graph and Tree (NGT)
➢ Make use of range search for construction
➢ Obtain a seed via VP-tree

➢ Current best methods in ann-benchmarks 
are NGT-based algorithms

➢ Quantization is natively available

➢ Repository: 
➢ From Yahoo Japan
➢ Used in Vald

[Iwasaki+, arXiv 18]

Image are from the 
original repository

https://github.com/yahoojapan/NGT

https://github.com/yahoojapan/NGT
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DiskANN (Vamana)
➢ Vamana: Graph-based search algorithm
➢ DiskANN: Disk-friendly search system using Vamana
➢ From MSR India

➢ Good option for huge data (not the main focus of this talk, though)
➢ The same team is actively developing interesting functionalites
✓ Data update: FreshDiskANN [Singh+, arXiv 21]
✓ Filter: Filtered-DiskANN [Gollapudi+, WWW 23] 

[Subramanya+, NeurIPS 19]

https://github.com/microsoft/DiskANN 

https://github.com/microsoft/DiskANN
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Just NN? Vector DB?
➢ Vector DB companies say “Vector DB is cool” 

➢ My own idea:

➢ Which vector DB?  ➡ No conclusions!

➢ If you need a clean & well designed API, I recommend taking a look
at docarray in Jina AI (see Han’s talk today!)

✓ https://weaviate.io/blog/vector-library-vs-vector-database
✓ https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
✓ https://zilliz.com/learn/what-is-vector-database 

Try the simplest 
numpy–only search

Slow?
Try fast algorithm such 

as HNSW in faiss

Try Vector DB

If speed is the only concern, 
just use libraries

https://weaviate.io/blog/vector-library-vs-vector-database
https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
https://zilliz.com/learn/what-is-vector-database
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Useful resources
➢ Several companies have very useful blog series

➢ Pinecone Blog
✓ https://www.pinecone.io/learn/

➢ Weaviate Blog
✓ https://weaviate.io/blog

➢ Jina AI Blog
✓ https://jina.ai/news/

➢ Zilliz Blog
✓ https://zilliz.com/blog

➢ Romain Beaumont Blog
✓ https://rom1504.medium.com/

https://www.pinecone.io/learn/
https://weaviate.io/blog
https://jina.ai/news/
https://zilliz.com/blog
https://rom1504.medium.com/
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Progress in the last three years

➢ Three years have passed since my previous tutorial at CVPR 2020

➢ What progress in the last three years in the ANN field? 

Y. Matasui, “Billion-scale Approximate Nearest Neighbor Search”, CVPR 2020 Tutorial
➢ Slide: https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-

approximate-nearest-neighbor-search
➢ Video: https://youtu.be/SKrHs03i08Q

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q
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Progress in the last three years

➢ Three years have passed since my previous tutorial at CVPR 2020

➢ What progress in the last three years in the ANN field? 

Y. Matasui, “Billion-scale Approximate Nearest Neighbor Search”, CVPR 2020 Tutorial
➢ Slide: https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-

approximate-nearest-neighbor-search
➢ Video: https://youtu.be/SKrHs03i08Q

➢ The basic framework is still same (HNSW and IVFPQ!)
➢ HNSW is still de facto standard; although several papers 

claim they perform better
➢ Disk-based systems are getting attention
➢ Vector DB has gained rapid popularity for LLM applications.
➢ Because of LLM, we should suppose D as ~1000 (not ~100)
➢ GPU-ANN is powerful, but less widespread than I expected; 

CPUs are more convenient for LLM
➢ Competitions (SISAP and bigann-benchmarks)
➢ New billion-scale datasets
➢ A breakthrough algorithm that goes beyond graph-based 

methods awaits.

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q
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➢ Background
➢ Graph-based search
✓ Basic (construction and search)
✓ Observation
✓ Properties
➢ Representative works
✓ HNSW, NSG, NGT, Vamana
➢ Discussion
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Thank you!
Time Session Presenter

13:30 – 13:40 Opening Yusuke Matsui

13:40 – 14:30 Theory and Applications of Graph-based Search Yusuke Matsui

14:30 – 15:20 A Survey on Approximate Nearest Neighbors in a Billion-Scale Settings Martin Aumüller

15:20 – 15:30 Break

15:30 – 16:20 Query Language for Neural Search in Practical Applications Han Xiao

Acknowledgements
➢ I would like to express my deep gratitude to Prof. Daichi Amagata, Naoki Ono, and Tomohiro Kanaumi for 

reviewing the contents of this tutorial and providing valuable feedback.
➢ This work was supported by JST AIP Acceleration Research JPMJCR23U2, Japan.



Billion-Scale Nearest 
Neighbor Search

CVPR 2023 Tutorial on Neural Search in Action, Part 2

Martin Aumüller

IT University of Copenhagen, maau@itu.dk

mailto:maau@itu.dk


2

Martin Aumüller

✔ Similarity search using hashing
✔ Benchmarking & workload generation

http://itu.dk/people/maau

Associate Professor, IT University of Copenhagen, Denmark
@maumueller

PUFFINN 
[Aumüller+, ESA 2019]

Billion-Scale ANN Challenge
[Aumüller+, NeurIPS 21, Competition]



From Million-Scale to Billion-Scale ANN

https://github.com/erikbern/ann-benchmarks 3

1M vectors, GloVe word embeddings

Graph-based

Service

B
et

te
r 

Th
ro

u
gh

p
u

t

Better Quality

https://github.com/erikbern/ann-benchmarks


From Million-Scale to Billion-Scale ANN

Rules
• Index building + searching single-threaded
• 2 hours time limit, container killed 

afterwards

Q: Scaling up by 1000x? 

2 hours → 2000 hours ~ 83 days
24 hours → 24000 hours ~ 3 years

(unrealistic scaling)
4



Billion-Scale ANN Challenge [Simhadri+, NeurIPS 2021]

5

Cut-off at 10k QPS

3 tracks: 
in-memory, 
out-of-memory, 
”exotic hardware”

Many entries did not improve on baseline by much.



The ANN search pipeline

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index 
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate 
selection

𝒙13
𝒙91

Scan 
candidates

0.20
3.25
0.72
1.68

𝒙74
𝒙′1, 𝒙′2, … , 𝒙′𝑳~milliseconds

~several hours

6



<tl;dnl> (Roadmap)

7

Can store data + 
index in RAM?

High recall?

High recall?

Graph-based ANN

IVF (or Graph-Based)

Compressed vectors 
(RAM) + graph/vectors 

(SSD)

IVF on compressed vectors

DiskANN/HNSW/…
(parameter selection difficult)

FAISS-IVF (better build times 
+ easy parameter selection)

DiskANN

FAISS-IVF (forget original vectors)



Billion-Scale Datasets

https://big-ann-benchmarks.com/
NeurIPS 2021 Challenge

800 GB 

100 GB 

Microsoft Bing: Search string →Web documents

8

256 GB 

Meta AI: Image descriptors for copy detection 

https://big-ann-benchmarks.com/


High Resources, High Recall
Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

9



Scaling Graph-Based Approaches

https://arxiv.org/pdf/2305.04359.pdf

Machines
- Azure Msv2 (4 Xeon, 192 vCPUs, 

2 TB RAM), $384 USD/day
- Azure Ev5 (2 Xeon, 96 vCPUs, 

672 GB RAM), $144 USD/day

10

https://arxiv.org/pdf/2305.04359.pdf


Scaling Graph-Based Approaches

• Recap
• Vectors are nodes

• Connected to “diverse set of 
similar points” + long range edges

• Incremental build
• Use search algorithm to find 

potential candidate neighbors

• Prune these candidates

𝒙13
𝒙91

Index size? Faster build? Tradeoffs?

~1B x “avg. degree of node” 

Practically all algorithms 
enforce user-set bound!

Smaller target degree + 
smaller beam width

Need larger beam width to 
compensate for “worse 
build graph” 11



𝒙13
𝒙91

Parallelizing insertion

• Order all points arbitrarily

• For each point:
• Carry out greedy search for 

nearest neighbor in “current 
graph”

• Connect to pruned set of vertices 
found during the NN search

Thread-safety?

“prefix doubling” 

12



Understanding parameters

• Index building
• Degree bound 𝑅

• upper limit on index size

• Beam width 𝐿 (building)
• better neighbors

• Pruning factor (𝛼)
• ”diversified neighbors”

•  Searching
• Beam width 𝑅search

13

🤔
Sensitive to parameter choices & 
they are difficult to choose!

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf


Build times & scaling

Beam widthDegree bound
Billion-scale: Index size not more 
than 4R GB (e.g., 256GB, 600GB)

10x increase → 11-12x build time increase

🤔

14



Parallelizing search

• Usually parallelization over 
queries (inter-query parallelism)

• Not so much in focus

• Beam width selection: “trial-
and-error”

15

Scaling: dataset 1000x larger → queries 2x slower



Summary

• Advantages
• Good scaling of #candidates

• Unparalleled performance in high-
recall regime

• Disadvantages
• Influence of parameter choices 

difficult to predict

• High index building times (but 
“almost out-of-box”)

1% of dataset 0.01% of dataset

0.0001% of dataset

16



How to get started
(DiskANN)

17
Official Documentation: https://github.com/Microsoft/DiskANN
Python examples: https://github.com/harsha-simhadri/big-ann-benchmarks, 

[DiskANN: Simhadri+, NeurIPS19]

https://github.com/Microsoft/DiskANN
https://github.com/harsha-simhadri/big-ann-benchmarks


High Resources, Low Recall
Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

18



IVF-based solutions (“inverted file index”)

Finding a space partition: Clustering-based (k-means), LSH-based, …

19

2 steps:
(1) Train partition
(2) Add vectors

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷



IVF: insert a vector

1.02
0.73
0.56
1.37
1.37
0.72

𝒙1

Record 𝒙1

Cells: all points closest to given centroid (“Voronoi cells”)
Build parameter: #clusters

20



IVF: search

0.54
2.35
0.82
0.42
0.14
0.32

𝒒

Find the nearest vector to 𝒒

Search parameter: #clusters to inspect
Candidates: #clusters inspected * avg. cluster size

21



How to choose parameters?

• Goal: inspect 0.0001% of dataset 
for 1B vectors ➔ 1000 points

• Back-of-the-envelope calculation:
• ~1000 points per cluster

• → need a million clusters 

• Making this practical
• Build an index on centroids

• Standard solution
• Build a graph on top of the centroids

• Alternatives: hierarchical k-means

1% of dataset 0.01% of dataset

0.0001% of dataset🤔

22



IVF-based approaches

• Advantages
• Predictable index size and 

relatively easy to understand 
parameters

• Strong implementations available
• GPU-based solutions

• Disadvantages
• Many candidates necessary in the 

high-recall regime
• Quantization necessary to limit 

impact of these distance 
computations

23



How to get started?

• Install via conda install -c pytorch faiss-cpu

24

Great documentation with code examples!
https://github.com/facebookresearch/faiss/wiki

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

index = faiss.index_factory(128, "PCA64,IVF16384_HNSW32,Flat")

Index factories available!

https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index


Billion-Scale ANN with limited 
resources

25



Interlude: Vector Quantization

26



Quantization techniques

🤔 Cluster with 1M centroids, using 
HNSW to index the centroids

27
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Basic idea

0.54
2.35
0.82
0.42

0.62
0.31
0.34
1.63

3.34
0.83
0.62
1.45

1 2 N ➢Need 4𝑁𝐷 byte to represent 𝑁 real-valued vectors
using floats

➢ If 𝑁 or 𝐷 is too large, we cannot read the data on memory
✓ E.g., 512 GB for 𝐷 = 128,𝑁 = 109

➢Convert each vector to a short-code

➢ Short-code is designed as memory-efficient
✓ E.g., 4 GB for the above example, with 32-bit code

➢Run search for short-codes

𝐷

1 2 N

co
d

e

co
d

e

co
d

e

Convert

… 

… 
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Basic idea

0.54
2.35
0.82
0.42

0.62
0.31
0.34
1.63

3.34
0.83
0.62
1.45

1 2 N

… 

➢Need 4𝑁𝐷 byte to represent 𝑁 real-valued vectors
using floats

➢ If 𝑁 or 𝐷 is too large, we cannot read the data on memory
✓ E.g., 512 GB for 𝐷 = 128,𝑁 = 109

➢Convert each vector to a short-code

➢ Short-code is designed as memory-efficient
✓ E.g., 4 GB for the above example, with 32-bit code

➢Run search for short-codes

𝐷

1 2 N

co
d

e

co
d

e

co
d

e

Convert

… 

What kind of conversion is preferred?

1. The “distance” between two codes can be 
calculated

2. The distance can be computed quickly

3. That distance approximates the distance
between the original vectors (e.g., 𝐿2)

4. Sufficiently small length of codes can achieve 
the above three criteria



Quantization Techniques

• Low precision
• work with fp16 instead of 32/64 bit floats

• Scalar quantization
• split up [min,max] into 𝐾 equidistant parts

• (binary/locality-sensitive) Hashing
• Apply hashing to embed into lower dimensional space

• Product quantization

1
5
1
0

0.54
2.35
0.82
0.42min max

width

Interval [0,3] split up into 6 parts

30
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0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

vector; 𝒙

PQ-code; ഥ𝒙

Codebook

Product Quantization; PQ [Jégou+, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
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ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou+, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙
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➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙
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0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

Product Quantization; PQ [Jégou, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙
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0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebook

➢Simple
➢Memory efficient
➢Distance can be estimated

Product Quantization; PQ [Jégou, TPAMI 2011]

➢ Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data
vector; 𝒙

PQ-code; ഥ𝒙

Bar notation for PQ-code:
𝒙 ∈ ℝ𝐷 ↦ ഥ𝒙 ∈ 1,… , 256 𝑀
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Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙



float: 32bit
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e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙



float: 32bit
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e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

e.g., 𝑀 = 8
8 × 8 = 64 [bit]

uchar: 8bit

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙



float: 32bit
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e.g., 𝐷 = 128
128 × 32 = 4096 [bit]

e.g., 𝑀 = 8
8 × 8 = 64 [bit]

1/64

uchar: 8bit

Product Quantization: Memory efficient

0.34
0.22
0.68
1.02
0.03
0.71

𝐷 𝑀
ID: 2

ID: 123

ID: 87

0.13
0.98

0.32
0.27

1.03
0.08

…
ID: 1 ID: 2 ID: 256

0.3
1.28

0.35
0.12

0.99
1.13

…
ID: 1 ID: 2 ID: 256

0.13
0.98

0.72
1.34

1.03
0.08

…
ID: 1 ID: 2 ID: 256

Codebookvector; 𝒙

PQ-code; ഥ𝒙

Can store all 1B vectors with 8 GB of RAM!



41

Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

Product Quantization: Distance estimation

0.54
2.35
0.82
0.42
0.14
0.32

0.62
0.31
0.34
1.63
1.43
0.74

3.34
0.83
0.62
1.45
0.12
2.32

… 

𝒙1 𝒙2 𝒙𝑁
Database vectors
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Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

Product Quantization: Distance estimation

0.54
2.35
0.82
0.42
0.14
0.32

0.62
0.31
0.34
1.63
1.43
0.74

3.34
0.83
0.62
1.45
0.12
2.32

… 

Product 
quantization

𝒙1 𝒙2 𝒙𝑁
Database vectors
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Query; 𝒒 ∈ ℝ𝐷

0.34
0.22
0.68
1.02
0.03
0.71

… 
ID: 42

ID: 67

ID: 92

ID: 221

ID: 143

ID: 34

ID: 99

ID: 234

ID: 3

Product Quantization: Distance estimation

𝒙1 𝒙2 𝒙𝑁

𝒙1 ∈ 1,… , 256 𝑀
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Query; 𝒒 ∈ ℝ𝐷

➢ 𝑑 𝒒, 𝒙 2 can be efficiently approximated by 𝑑𝐴 𝒒, ഥ𝒙 2

➢ Lookup-trick: Looking up pre-computed distance-tables
➢ Candidate selection by 𝑑𝐴

0.34
0.22
0.68
1.02
0.03
0.71

Linear
Scan 
Through
Candidates

… 
ID: 42

ID: 67

ID: 92

ID: 221

ID: 143

ID: 34

ID: 99

ID: 234

ID: 3

Product Quantization: Distance estimation

𝒙1 𝒙2 𝒙𝑁

Asymmetric distance

𝒙1 ∈ 1,… , 256 𝑀
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➢ Only tens of lines in Python
➢ Pure Python library: nanopq https://github.com/matsui528/nanopq
➢ pip install nanopq

Not pseudo codes

https://github.com/matsui528/nanopq


Cluster with 1M centroids, using 
HNSW to index the centroids

- Compress vector into 128 
blocks, 

- each with 2^4 = 16 
codewords, 

- use SIMD-based 
asymmetric distance 
computation [Andre+17]

Rotate vectors to allow for 
better product quantization 

[Ge+14]
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The ANN search pipeline

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index 
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate 
selection

𝒙13
𝒙91

Scan 
candidates

0.20
3.25
0.72
1.68

𝒙74
𝒙′1, 𝒙′2, … , 𝒙′𝑳~milliseconds

~several hours
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The ANN search pipeline (with quantization)

Search𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

Data vectors

Index 
building

𝒙13 𝒙91

Index structure (Graph, IVF, Tree)

B
U

IL
D

SE
A

R
C

H 0.23
3.15
0.65
1.43

𝒒 ∈ ℝ𝐷

Candidate 
selection

𝒙13
𝒙91

Scan 
candidates 

by code

0.20
3.25
0.72
1.68
𝒙74

ഥ𝒙′1, , … , ഥ𝒙𝑲
′

~milliseconds

~several hours

Rerank with 
true vectors

Typically 10-100x more quantized vectors than target
48



Index on Quantized Vectors

• Learn codes, represent each vector 
by its PQ code

• Code size: 32-64 byte
• Can store the compressed vectors in 

memory
• Lookup tables in cache/avx registers

• Index cost on top
• Graph: 1G * degree_bound

• Typically requires small degree_bounds
(not well studied?)

• IVF: 1M centroids + index on 
centroids on top of vectors
• Usually works well 

49

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors 

Recall quality very data dependent!

Metric: Inner Product

w/o re-ranking

w/ re-ranking

SCANN: Guo+, ICML 2020.

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors


Out-of-Memory index + High-Recall (DiskANN)

𝒙1, 𝒙2, … , 𝒙𝑁

𝒙𝑛 ∈ ℝ𝐷

K-means (k=40)
Assign each vector 

to its closest 2 
centroids

in-memory

Out-of-memory

M
e

rge
 an

d
 sto

re
 o

n
 SSD
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DiskANN out-of-memory

ID: 42

ID: 67

ID: 92

ഥ𝒙𝑖

RAM

SSD

𝑅 = 128 degree

𝒙𝒊 𝒚𝟏 𝒚𝑹

Original vector Neighbor indices,
Padded if < 𝑅 neighbors

Expanding a node:
1. Read adjacent nodes from SSD 

(+ fetch original vector “for free”)
2. Compute distances of query to neighbors

(using PQ codes)

~32byte
/vector

Still serves 1k+ queries per second

1 block read from SSD

32+ GB

dataset size
+ 512 GB graph

51

Memory layout for vector 𝑥𝑖



(Very) recent developments
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A new graph approach?

• Hierarchical tree, leaves are HNSW 
graphs

• Interesting quantization technique 
motivated by time series

• Better build times, good query 
performance

To appear at VLDB 2023, 
https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf
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https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf


Automated Parameter tuning

• Finding build/search parameters 
by constrained optimization

• Build on top of ScaNN

54

ICLR23



Filtered search

• Setting
• Vectors have 

associated metadata

• Example, YFCC: tags, 
gps, date

• Query
• Find the most similar 

images to this images 
that were taken with a 
Sony Camera in 2017 
in Vancouver
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Out-of-distribution queries

• Setting
• Vectors are image embeddings

• Queries are text embeddings

56

OPQ64_128,IVF16384,PQ64

Yandex, Text-2-Image dataset
https://arxiv.org/pdf/2301.01702.pdf 

https://arxiv.org/pdf/2301.01702.pdf


Streaming settings

• Setting
• Many applications (search 

engine, recommender 
system) need to handle 
updates

• Daily rebuilds often too 
expensive

• Question: Clever update 
strategies?
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https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx 

https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx


NeurIPS 2023 Challenge: Practical Vector Search

• 4 Tasks (10M vectors)
• Filtered ANN

• Streaming ANN

• Out-of-distribution ANN

• ANN on sparse data

• Strong baselines based on IVF 
(faiss) and graphs (DiskANN)

• Cloud credits available for 
testing (screening process)

https://big-ann-benchmarks.com

Official 
announcement 

soon!

Timeframe: July-November 2023
58



Thanks!

https://big-ann-benchmarks.com

https://matsui528.github.io/cvpr2023_tutorial_neural_search/



Berlin · Beijing ·  Shenzhen

Representing, 
transiting & 
searching 
multimodal data

Han Xiao, Founder of Jina AI
     @hxiao        @JinaAI_ 

Neural Search in Action

https://twitter.com/hxiao


About me & Jina AI
Han Xiao, Founder & CEO of Jina AI. Based in Berlin, Germany.

- ML PhD in 2014 TU Munich; Zalando Research; Tencent AI Lab; Creator 
of Fashion-MNIST.

Jina AI

- Founded in 2020, focus on multimodal AI search & create
- Opensource contributor: Jina, DocArray (Linux Foundation), 

CLIP-as-service, … 
- 60 people, HQ in Berlin. Offices in Beijing, Shenzhen.



Jina AI Tech Spectrum



Prompt tuning

Prompt serving

Model tuning

Model serving

the deployment of fine-tuned models in a 
production environment, usually requiring 
substantial resources such as GPU hosting. 
MLOps, emphasizing the serving of mid-size to 
large models in a scalable, efficient, and reliable 
manner.

the process of crafting and refining the input 
prompts in order to guide its output towards 
specific, desired responses.

wrapping and serving prompts through an API, 
without hosting heavy models. The API calls a 
public large language model service and handles 
the orchestration of inputs and outputs in a chain 
of operations.

Also known as fine-tuning, involves adjusting the 
parameters of a pre-trained model on a new, 
often task-specific dataset to improve its 
performance and adapt it to a specific 
application.



Prompt tuning

Prompt serving

Model tuning

Model serving

PromptPerfect

Finetuner

Inference API
Jina+DocArray

Jcloud

OpenGPT
CLIP-as-service

DiscoArt

DevGPT

ThinkGPT

DalleFlow

DocsQA

AgentChain

Rationale

SceneX

Ensemble
ArtiBanner

LLMSearch

LC-serve

Faster time2market

Long-term invest



Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ 
concepts like data classes could be helpful.



Preliminary: 
from unimodal to multimodal 



Cross-modal

Creative AI

Neural search

Multimodal

Unimodal AI

Before 2021

2022

Future



From unimodal to multimodal

 "modality" roughly means "data type". 

- Unimodal AI refers to applying AI to one specific type of data. 
- Most early machine learning works fall into this category. 
- Even today, when you open any machine learning literature, 

unimodal AI is still the majority of the content.



Unimodal - NLP
LDA was the 2010's transformer



Unimodal tasks in NLP
Adhoc methods for NLP problems



Unimodal - CV
Fashion-MNIST, 2017



Unimodal tasks in CV



Unimodal tasks in speech & audio



Unimodal know-how are hardly transferable

● Tasks are specific to just one modality (e.g. 

textual, visual, acoustic, etc).

● Knowledge is learned from and applied to 

only one modality (i.e. a visual algorithm can 

only learn from and be applied to images).



A detour: cross-modal model
NIPS 2010, Cross-LDA



Erase the boundary between modalities

- Tasks are shared and transferred between multiple modalities (so 
one algorithm can work with images and text and audio).

- Knowledge is learned from and applied to multiple modalities (so an 
algorithm can learn from textual data and apply that to visual data).



Paradigm shift from unimodal to multimodal

The rise of multimodal AI can be attributed to advances in two machine 
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations 
for all modalities.

- Transfer learning lets models first learn fundamental knowledge, and 
then fine-tune on specific domains.



CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more AI 
applications move beyond 
one data modality and 
leverage relationships 
between different modalities



“An artificial intelligence system 
trained on words and sentences 

alone will never approximate 
human understanding.”

Y. Lecun in 2022 in AI And The Limits Of Language



Multimodal AI is the future, 
but the ML ecosystem is not yet 

suited for it.



Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ 
concepts like data classes could be helpful.



DocArray for 
representing, transiting, 

storing, searching 
multimodal data



Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to 
work with multiple modalities at the same time.

- No easy way to represent unstructured and nested multimodal data.



Storage

Audio

Image

Video

Text

3D mesh

ComputePreprocess

…
……

…

Lack of common interface



● Unstructured 

document

● Nested content

● Different modalities 
(text, image, …)

No easy way to represent 
unstructured nested multimodal data



DocArray way of representing multimodal 
data



Frequent data transfer over network is 
expensive

Multimodal data is processed by multiple models and models are usually deployed in a 
distributed way.



Performant serialization is important
DocArray is designed to be “ready-to-wire” at anytime.



Binary serialization optimized for in-transit & 
at-rest



Binary serialization optimized for in-transit & 
at-rest



Storing nested data with databases is 
complicated

- Complex and nested schema are not directly supported in 
databases

- Explosion in numbers of vector databases with different APIs but no 
universal client



DocArray way of storing data



DocArray way of storing data



Vector Search via a consistent API



Vector Search via a consistent API



Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.



Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.



Hands-on DocArray



Install DocArray
To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/


Representing data - Document
At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a BannerDoc class that can be used to represent the data of a website banner:

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc


Representing data - Document



Representing multimodal data with nested 
structure
Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube 
videos. 

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's 
keep it simple).

All of these elements are from different modalities: 

the title and description are text, 

the thumbnail is an image, 

and the video itself is, well, a video.

DocArray lets you represent all of this multimodal data 
in a single object.



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure

You see here that ImageDoc and VideoDoc are also 
BaseDoc, and they are later used inside another 
BaseDoc`. This is what we call nested data 
representation.

BaseDoc can be nested to represent any kind of data 
hierarchy.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc


Representing multimodal data with nested 
structure

You see here that ImageDoc and VideoDoc are also 
BaseDoc, and they are later used inside another 
BaseDoc`. This is what we call nested data 
representation.

BaseDoc can be nested to represent any kind of data 
hierarchy.

This representation can be used to send or 
store data. You can even use it directly to 
train a machine learning Pytorch model on 
this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html


Recap: representing multimodal data 
- "Dataclass" look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types

- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D

- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding

- Optional[]



Representing an array of multimodal data
The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single 
datapoint. 

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

● DocList which is a Python list of BaseDocs
● DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec


Example of DocList



Example of DocList



Example of DocList
DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.



Example of DocList



Accessing member attribute at array level



Accessing member attribute at array level



DocList[DocType] syntax
DocList[DocType] creates a custom DocList that can only contain DocType 
Documents.

Non-typing DocList for 
heterogeneous data

Strong-typing DocList for 
homogeneous data

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList


DocList vs DocVec
DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually 
owned by each BaseDoc collect just different Document references. 

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the 
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying 
the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that 
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec


DocList vs DocVec
Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

...



DocList vs DocVec



DocList vs DocVec

embed

embed



DocList vs DocVec



Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar 
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to 
access the data.



Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar 
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to 
access the data.

you should use DocVec when you need to work with 
contiguous data, and you should use DocList when 
you need to rearrange or extend your data.



Storing & retrieving via Vector Database



Storing & retrieving via Vector Database



Document Index: ORM for vector DBs
Document Index provides a unified interface to a number of vector databases. 

You can think of Document Index as an ORM for vector databases.

Currently, DocArray supports the following vector databases:

● Weaviate | Docs
● Qdrant | Docs
● Elasticsearch v7 and v8 | Docs
● HNSWlib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/


Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
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Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a 
schema of the form of MyDoc. The Document Index 
then creates a column for each field in MyDoc.

The column types in the backend database are 
determined by the type hints of the document's 
fields. Optionally, you can customize the database 
types for every field.

Most vector databases need to know the 
dimensionality of the vectors that will be stored. 
Here, that is automatically inferred from the type hint 
of the embedding field: NdArray[128] means that the 
database will store vectors with 128 dimensions.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations


Index data



Index data

As you can see, DocList[MyDoc] and 
HnswDocumentIndex[MyDoc] are both 
parameterized with MyDoc. This means 
that they share the same schema, and in 
general, the schema of a Document 
Index and the data that you want to 
store need to have compatible schemas



Vector search



Vector search



Vector search



Vector search



Hybrid search through the query builder
Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible 
through build_query():

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query


Customize vector DB configuration



Indexing and 
searching 
multimodal data
In the following example you can see a 
complex schema that contains nested 
Documents. The YouTubeVideoDoc contains a 
VideoDoc and an ImageDoc, alongside some 
"basic" fields:



Indexing and searching multimodal data
You can perform search on any nesting level by using the dunder operator to specify the field defined in the 
nested data.



Nested DocList with 
subindex
Documents can be nested by containing a DocList of other 
documents, which is a slightly more complicated scenario 
than the previous one.

In this case, the nested DocList will be represented as a new 
sub-index (or table, collection, etc., depending on the 
database backend), that is linked with the parent index 
(table, collection, ...).



Search by subindex



Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice
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Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice



Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice



Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ 
concepts like data classes could be helpful.



An end to end example

https://docs.docarray.org/how_to/multimodal_training_and_serving/ 

https://docs.docarray.org/how_to/multimodal_training_and_serving/


Berlin · Beijing ·  Shenzhen

Thanks for 
your 
attention

jina.ai
@JinaAI_
han.xiao@jina.ai
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