VANCOUVER, CANADA

Neural Search in Action

Yusuke Matsui
The University of Tokyo

Martin Aumüller
IT University of Copenhagen

Han Xiao
Jina AI

Yusuke Matsui
 東京大学
 THE UNIVERSITY OF TOKYO

Lecturer（Assistant Professor），the University of Tokyo，Japan （3）http：／／yusukematsui．me＠utokyo＿bunny（）＠matsui528
\checkmark Image retrieval
\checkmark Large－scale indexing

ARM 4－bit PQ［Matsui＋，ICASSP 22］

Handle as a 256 －bit SIMD register：uint $8 \times 16 \times 2$＿t

28－bit SIMD register：uint 8×16＿t 128－bit SIMD register：uint 8×16＿t									
k_{1}	2	k_{3}		k_{1}	k_{17}	k_{18}	k_{1}		k_{32}
13	3	1	．．．	8	1	15	7	．．．	2

Image Retrieval in the Wild

Image Retrieval in the Wild ［Matsui＋，CVPR 20，tutorial］

Martin Aumüller

Associate Professor, IT University of Copenhagen, Denmark $(3$ http://itu.dk/people/maau
© @maumueller
\checkmark Similarity search using hashing
\checkmark Benchmarking \& workload generation

PUFFINN

[^0]Results of the NeurIPS'21 Challenge on Billion-Scale
Approximate Nearest Neighbor Search

Harsha Vardhan Simhadri ${ }^{1}$
George Williams ${ }^{2}$
Martin Aumüller ${ }^{3}$
Matthijs Douze ${ }^{4}$
Artem Babenko ${ }^{5}$
Dmitry Baranchuk ${ }^{5}$
Qi Chen ${ }^{1}$
Lucas Hosseini ${ }^{4}$
Ravishankar Krishnaswamy ${ }^{1}$
Gopal Srinivasa ${ }^{1}$
Suhas Jayaram Subramanya ${ }^{6}$
Jingdong Wang ${ }^{7}$

HARSHASI@MICROSOFT.COM GWilliams@ieee.org
maAu@itu.dK
MAAU@ITU.DK
MATTHIJS@FB.COM
ARTEM.BABENKO@PHYSTECH.EDU dbaranchuk@yandex-team.ru

NCHUK@YANDEX-TEAM.RU
CHEQI@MICROSOFT.COM
$\begin{array}{r}\text { CHEQI@MICROSOFT.COM } \\ \hline\end{array}$
LUCAS.hosseini@gmail.com
RAKRI@MICROSOFT.COM
GOPALSR@MICROSOFT.COM
GOPALSR@MICROSOFT.COM
SUHASJ@CS.CMU.EDU
wanguingdong@baidu.com

Billion-Scale ANN Challenge
[Aumüller+, NeurIPS 21, Competition] ${ }^{3}$

Han Xiao

Founder \& CEO of Jina AI
(3) https://jina.ai

5 @hxiao
\checkmark Multimodal search \& generation
\checkmark Model tuning \& serving; prompt tuning \& serving

```
E) Jina
Build multimodal AI applications on the cloud

\section*{(b) DocArray}

The data structure for multimodal data

Process, embed, recommend, store and transfer data, laying a solid foundation for any multimodal Al project.
© cup-as-service
Embed images and sentences into fixedlength vectors with CLIP

Eass, low-latency and highly scalable service that can easily be integrated into new and existing solutions.

\section*{Example: Multimodal Search}


\section*{Example: LLM + embedding}
"Who won curling gold at the 2022 Winter Olympics?"

‘Niklas Edin, Oskar Eriksson, ...

\section*{Target audiences}
> Those who want to try Neural Search
> Those who have tried Neural Search but would like to know more about the algorithm in depth

\section*{Our talk}
\(>\) Million-scale search (Yusuke)
\(>\) Billion-scale search (Martin)
\(>\) Query language (Han)

\section*{Schedule}
\begin{tabular}{lll} 
The & Session & Presenter \\
\hline \(13: 30-13: 40\) & Opening & Yusuke Matsui \\
\hline 13:40-14:30 & Theory and Applications of Graph-based Search & Yusuke Matsui \\
\hline \(14: 30-15: 20\) & \begin{tabular}{l} 
A Survey on Approximate Nearest Neighbors in a \\
Billion-Scale Settings
\end{tabular} & Martin Aumüller \\
\hline \(15: 20-15: 30\) & Break & \\
\hline \(15: 30-16: 20\) & \begin{tabular}{l} 
Query Language for Neural Search in Practical \\
\\
Applications
\end{tabular} & Han Xiao \\
\hline
\end{tabular}

\title{
Theory and Applications of Graph-based Search
}

Yusuke Matsui
The University of Tokyo


\section*{Yusuke Matsui 恵京大学}

Lecturer（Assistant Professor），the University of Tokyo，Japan
（3）http：／／yusukematsui．me
，＠utokyo＿bunny
（P）＠matsui528
\(\checkmark\) Image retrieval
\(\checkmark\) Large－scale indexing

Handle as a 256－bit SIMD register：uint \(8 \times 16 \times 2\)＿t
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{128－bit SIMD register：uint \(8 \times 16\)－t 128－bit SIMD register：uint \(8 \times 16\)－} \\
\hline \(k_{1}\) & \(k_{2}\) & \multicolumn{3}{|l|}{\(k_{3}\)} & \(k_{1}\) & \(k_{18}\) & \(k_{1}\) & & \(k\) \\
\hline 13 & 3 & 1 & ．．． & 8 & 1 & 15 & 7 & ．．． & 2 \\
\hline
\end{tabular}


ARM 4－bit PQ［Matsui＋，ICASSP 22］

Image Retrieval in the Wild


Image Retrieval in the Wild ［Matsui＋，CVPR 20，tutorial］

\section*{\(>\) Background}

Graph-based search
\(\checkmark\) Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana
Discussion

Background
Graph-based search
\(\checkmark\) Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana
Discussion

\section*{Nearest Neighbor Search; NN}

\(>N D\)-dim database vectors: \(\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}\)

\section*{Nearest Neighbor Search; NN}
\(>N D\)-dim database vectors: \(\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}\)
\(>\) Given a query \(\boldsymbol{q}\), find the closest vector from the database
\(>\) One of the fundamental problems in computer science \(\rightarrow\) Solution: linear scan, \(O(N D)\), slow \(:\)

\section*{Approximate Nearest Neighbor Search; ANN}

\(\rightarrow\) Faster search
\(>\) Don't necessarily have to be exact neighbors
\(>\) Trade off: runtime, accuracy, and memory-consumption

\section*{Approximate Nearest Neighbor Search; ANN}

Result

\(>\) In this talk, suppose: \(N<10^{9}\)
\(>\) Faster search
\(>\) All data can be loaded on memory
\(>\) Don't necessarily have to be exact neighbors
> Trade off: runtime, accuracy, and memory-consumption

\section*{Real-world use cases 1: multimodal search}


Encoder determines the upper bound of the accuracy of the system
\(>\) ANN determines a trade-off between accuracy, runtime, and memory


\section*{Real-world use cases 2: LLM + embedding}

ChatGPT 3.5
(trained in 2021)

\section*{Real-world use cases 2: LLM + embedding}


\section*{Real-world use cases 2: LLM + embedding}

\section*{Real-world use cases 2: LLM + embedding}
```

"Who won curling
gold at the 2022
Winter Olympics?"

```

ChatGPT 3.5
(trained in 2021)


\section*{Real-world use cases 2: LLM + embedding}
```

"Who won curling
gold at the 2022
Winter Olympics?"

```

ChatGPT 3.5
(trained in 2021)


\section*{Real-world use cases 2: LLM + embedding}
```

"Who won curling
gold at the 2022
Winter Olympics?"

```

ChatGPT 3.5
(trained in 2021)


\section*{Real-world use cases 2: LLM + embedding}
```

"Who won curling
gold at the 2022
Winter Olympics?"

```


ChatGPT 3.5
(trained in 2021)


\section*{Real-world use cases 2: LLM + embedding}


ChatGPT 3.5
(trained in 2021)
\(\left[\begin{array}{l}0.23 \\ 3.15 \\ 0.65 \\ 1.43\end{array}\right]\)


\section*{Real-world use cases 2: LLM + embedding}


ChatGPT 3.5
(trained in 2021)

"List of 2022 Winter
Olympics medal winners..."

\section*{Real-world use cases 2: LLM + embedding}
"Who won curling gold at the 2022 Winter Olympics?"

"Who won curling gold at the
2022 Winter Olympics?
Use the bellow articles: List of
2022 Winter Olympics medal
winners..."
Update


ChatGPT 3.5 (trained in 2021)


\section*{Real-world use cases 2: LLM + embedding}


\section*{Real-world use cases 2: LLM + embedding}


\section*{Real-world use cases 2 : LLM + embedding}


\section*{Three levels of technology}

\section*{Algorithm}
> Scientific paper
\(>\) Math
> Often, by researchers

Product Quantization + Inverted Index (PQ, IVFPQ) [Jégou+, TPAMI 2011]

Hierarchical Navigable Small World (HNSW)
[Malkov+, TPAMI 2019]

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

\section*{Library}
> Implementations of algorithms
> Usually, a search function only
> By researchers, developers, etc

Service (e.g., vector DB)
\(>\) Library + (handling metadata, serving, scaling, IO, CRUD, etc)
> Usually, by companies

Pinecone


Weaviate

\section*{Three levels of technology}

Algorithm
\(>\) Scientific paper
\(>\) Math
> Often, by researchers

Library
> Implementations of algorithms
\(>\) Usually, a search function only
> By researchers, developers, etc

Service (e.g., vector DB)
\(>\) Library + (handling metadata, serving, scaling, IO, CRUD, etc)
> Usually, by companies

implemented in multiple libraries

> By researchers, developers, etc

Hierarchical Navigable Small World (HNSW) [Malkov+, TPAMI 2019]

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

Service (e.g., vector DB)
\(>\) Library + (handling metadata, serving, scaling, IO, CRUD, etc)
> Usually, by companies

\section*{Pinecone}


Weaviate

\section*{Three levels of technology}

Algorithm
\(>\) Scientific paper
\(>\) Math
> Often, by researchers

Library
> Implementations of algorithms
\(>\) Usually, a search function only
> By researchers, developers, etc

Service (e.g., vector DB)
\(>\) Library + (handling metadata, serving, scaling, IO, CRUD, etc)
> Usually, by companies

\section*{Pinecone}

Qdrant

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

\section*{?}


\section*{Three levels of technology}

Algorithm
> Scientific paper
\(>\) Math
> Often, by researchers

\section*{Library}
> Implementations of algorithms
> Usually, a search function only
> By researchers, developers, etc

Service (e.g., vector DB)
\(>\) Library + (handling metadata, serving, scaling, IO, CRUD, etc)
> Usually, by companies

\section*{Pinecone} Inverted Index (PQ, IVFPQ) [Jégout, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]




\section*{\(>\) Background}

Graph-based search
Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana

\section*{Discussion}

\section*{Graph search}
\(>\) De facto standard if all data can be loaded on memory
\(>\) Fast and accurate for real-world data
> Important for billion-scale situation as well
\(\checkmark\) Graph-search is a building block for billion-scale systems

\(>\) Traverse graph towards the query Seems intuitive, but not so much easy to understand
\(>\) Review the algorithm carefully

\section*{Graph search}
\(>\) De facto standard if all data can be loaded on memory
\(>\) Fast and accurate for real-world data
\(>\) Import
\(\checkmark\) Grar

\section*{The purpose of this tutorial is to make graph search not a black box}
entry point
> Traverse graph towards the query Seems intuitive, but not so much easy to understand
\(>\) Review the algorithm carefully


\section*{Increment approach}
> Add a new item to the current graph incrementally


\section*{Refinement approach}
> Iteratively refine an initial graph


\section*{Increment approach}
> Add a new item to the current graph incrementally


\section*{Refinement approach}
> Iteratively refine an initial graph

Construction: incremental approach

\(>\) Each node is a database vector

Construction: incremental approach

\(>\) Each node is a database vector
\(>\) Given a new database vector,

\(>\) Each node is a database vector
\(>\) Given a new database vector, create new edges to neighbors

\(>\) Each node is a database vector
\(>\) Given a new database vector, create new edges to neighbors

\(>\) Each node is a database vector
\(>\) Given a new database vector, create new edges to neighbors


\section*{Increment approach}
> Add a new item to the current graph incrementally


\section*{Refinement approach}
> Iteratively refine an initial graph

\(>\) Create an initial graph (e.g., random graph or approx. kNN graph)
\(>\) Refine it iteratively (pruning/adding edges)
\(>\) Need to be moderately sparse (otherwise the graph traverse is slow)
\(>\) Some "long" edges are required for shortcut

\(>\) Create an initial graph (e.g., random graph or approx. kNN graph)
\(>\) Refine it iteratively (pruning/adding edges)
>Given a query vector


Candidates (size = 3)
\(>\) Given a query vector
\(>\) Start from an entry point (e.g.,(M)


Candidates
(size = 3)

Search Images are from [Malkov+, Information Systems, 2013]


\section*{Search Images are from [Malkov+, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate (M)

\section*{Search Images are from [Malkov+, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate (M). Check it.

\(>\) Pick up the unchecked best candidate ( M ). Check it.
\(>\) Find the connected points.


Candidates (size = 3)
\(>\) Pick up the unchecked best candidate (M). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.



Candidates (size = 3)
\(>\) Pick up the unchecked best candidate (M). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate ( M ). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate ( M ). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

\(>\) Pick up the unchecked best candidate (M). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)


Candidates
(size = 3)

Search Images are from [Malkov+, Information Systems, 2013]


\section*{Search Images are from [Malkov+, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate (D)

\section*{Search Images are from [Malkov+, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate ( (1). Check it.

\section*{Search Images are from [Malkov+, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.


Candidates
(size = 3)
\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
15.3
(L)
13.2
J. 11.110.2
(1)
9.7
(G) 3.5

B
2.3

Candidates
(size = 3)
\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

(I) 9.7
(G) 3.5
(B) 2.3

Candidates
(size = 3)

Search Images are from [Malkov+, Information Systems, 2013]


\(>\) Pick up the unchecked best candidate (B)

\(>\) Pick up the unchecked best candidate (B). Check it.

\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.

\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.


Candidates (size = 3)
\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.


Candidates
(size = 3)
\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

\(>\) Pick up the unchecked best candidate (B). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

(B) 2.3
(D) 2.1
0.5

Candidates
(size = 3)

Search Images are from [Malkov+, Information Systems, 2013]


\(>\) Pick up the unchecked best candidate (C)).

\(>\) Pick up the unchecked best candidate (C)). Check it.

\(>\) Pick up the unchecked best candidate (c). Check it.
\(>\) Find the connected points.

\section*{Search Images are from [Malkovt, Information Systems, 2013]}

\(>\) Pick up the unchecked best candidate (c). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate (c). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

(B) 2.3
(D) 2.1
0.5

Candidates
(size = 3)

\section*{Search Images are from [Malkov+, Information Systems, 2013]}


\(>\) Pick up the unchecked best candidate (D).

\(>\) Pick up the unchecked best candidate (D). Check it.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

(H) 3.9
(B) 2.3

D 2.1
0.5

Candidates
(size = 3)
\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)

\(>\) Pick up the unchecked best candidate (D). Check it.
\(>\) Find the connected points.
\(>\) Record the distances to q.
\(>\) Maintain the candidates (size=3)



Candidates
(size = 3)
\(>\) All candidates are checked. Finish.
\(>\) Here, © is the closet to the query ( \(\bigcirc\) )

\section*{Search Images are from [Malkov+, Information Systems 2013]}

\(>\) All candidates are checked. Finish.
\(>\) Here, © is the closet to the query ( \(\bigcirc\) )

Final output 1: Candidates
\(>\) all r- oc aro rherkod Finish.

\(>\)
Final output 2: Checked items > i.e., search path


Final output 2: Checked items \(>\) i.e., search path

Final output 3: Visit flag \(>\) For each item, visited or not

\section*{\(>\) Background}

\section*{Graph-based search}

Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana
Discussion

\section*{Observation: runtime}
> Item comparison takes time; \(O(D)\)

> The overall runtime ~\#item_comparison ~ length_of_search_path * average_outdegree

outdegree = 1

\[
\text { outdegree = } 2
\]
3rd path

\section*{Observation: runtime}
\(>\) Item comparison takes time; \(O(D)\)
> The overall runtime ~\#item_comparison ~ length_of_search_path * average_outdegree \(1^{\text {st }}\) path

To accelerate the search,
(1) How to shorten the search path?
> E.g., long edge (shortcut), hierarchical structure
(2) How to sparsify the graph?
> E.g., deleting redundant edges

size = 1: Greedy search

size > 1: Beam search
\(>\) Larger candidate size, better but slower results
\(>\) Online parameter to control the trade-off
\(>\) Called "ef" in HNSW

\section*{Pseudo code}

Algorithm 1. Search-on-Graph( \(G, \mathbf{p}, \mathbf{q}, l\) )
Ensure: \(\begin{gathered}\text { size } l \\ \text { nearest neighbors of } \mathbf{q}\end{gathered}\)
    1: \(i=0\), candidate pool \(S=\emptyset\)
    S.add(p)
    while \(i<l\) do
        \(i=\) the id of the first unchecked node \(p_{i}\) in \(S\)
        mark \(\mathbf{p}_{\mathbf{i}}\) as checked
        for all neighbor \(\mathbf{n}\) of \(\mathbf{p}_{\mathbf{i}}\) in \(G\) do
            if \(\mathbf{n}\) has not been visited then
        S.add(n)
        end for
        sort \(S\) in ascending order of the distance to \(\mathbf{q}\)
        if \(S\).size() \(>l\) then
        size no larger than
    end while
    return the first \(k\) nodes in \(S\)
```

Algorithm 1: GreedySearch $\left(s, \mathrm{x}_{q}, k, L\right)$
Data: Graph G with start node s, query x_{q}, result
size k, search list size $L \geq k$
Result: Result set \mathcal{L} containing k-approx NNs, and
a set \mathcal{V} containing all the visited nodes
begin
initialize sets $\mathcal{L} \leftarrow\{s\}$ and $\mathcal{V} \leftarrow \emptyset$
while $\mathcal{L} \backslash \mathcal{V} \neq \emptyset$ do
let $p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|x_{p}-x_{q}\right\|$
update $\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)$ and
$\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}$
if $|\mathcal{L}|>L$ then
update \mathcal{L} to retain closest L
points to x_{q}
return [closest k points from \mathcal{L}; \mathcal{V}]

```

DiskANN [Subramanya+, NeurIPS 19]
```

Algorithm 1 Beam search
Data: graph G, query }q\mathrm{ , initial vertex }\mp@subsup{v}{0}{}\mathrm{ , output size }
Initialization:
V ={vo}// a set of visited vertices
H}={\mp@subsup{v}{0}{}:d(\mp@subsup{v}{0}{},q)}// a heap of candidate
while has runtime budget do
vi}=\mathrm{ SelectNearest(H, q)
for \hat{v}\in\operatorname{Expand}(\mp@subsup{v}{i}{},G) do
if \hat{v}\not\inV then
V := Add(V,\hat{v})
H:= Insert(H,\hat{v},d(\hat{v},q))
end
end
end
return TopK(V, q, k)
Learning to route [Baranchuk+, ICML 19]

```

NSG [Cong+, VLDB 19]
\(>\) All papers have totally different pseudo code \(: \%\)
Principles are the same. But small details are different.
Hint: Explicitly state the data structure or not

\section*{Pseudo code}

\section*{Candidates are stored} \(\frac{\text { Algor }}{\text { Requi }}\) in an array
size \(l\)
Ensure: \(k\) neares
1: \(i=0\), candid
2: \(S . \operatorname{add}(\mathbf{p})\)
3: while \(i<l d\)
\(i=\) the ic
e first unchecked node \(p_{i}\) in \(S\) lecked
\(\operatorname{mark} \mathbf{p}_{\mathrm{i}}\) a
bor \(\mathbf{n}\) of \(\mathbf{p}_{\mathbf{i}}\) in \(G\) do
for all nei hbor \(\mathbf{n}\) of \(\mathbf{p}_{\mathrm{i}}\) in \(G\) do
S.add(n)
end if
end for
sort \(S\) in ascending order of the distance to \(\mathbf{q}\)
if \(S\).size() > \(l\) then
\(S\).resize ( \(l\) ) / / remove nodes from ack of \(S\) to keep its size no larger than \(l\)
end if
end while
return the first \(k\) nodes in \(S\)
NSG[COnot V/I
Sort the array explicitly

Candidates are stored

\section*{\(\overline{\mathrm{A}}\)}
\(\overline{\text { Da }}\) in a set


When need to sort, say "closest L points"

Algorithm 1 Beam search
Data: graph G, query \(q\), initial vertex \(v_{0}\), output size \(k\) Initialization:
\(\mathrm{V}=\left\{v_{0}\right\} / / \mathrm{a}\) set of visited vertices
\(\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /\) a heap of candidates
while has runtime budget do
\[
v_{i}=\text { SelectNearest }(\mathrm{H}, \mathrm{q})
\]
for \(\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)\) do
if \(\hat{v} \notin V\) then
\(V:=\operatorname{Add}(V, \hat{v})\)
\(H:=\operatorname{Insert}(H, \hat{v}, d(\)
end
end
end
return \(\operatorname{TopK}(V, q, k)\)
Learning to route [Bara
CML 19]

\section*{Pseudo code}


Algorithm 1 Beam search
Data: graph G, query \(q\), initial vertex \(v_{0}\), output size \(k\) Initialization:
\(\mathrm{V}=\left\{v_{0}\right\} / / \mathrm{a}\) set of visited vertices
\(\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /\) a heap of candidates
while has runtime budget do
\(v_{i}=\) SelectNearest \((\mathrm{H}, \mathrm{q})\)
for \(\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)\) do
\[
\text { if } \hat{v} \notin V \text { then }
\]
\(V:=\operatorname{Add}(V, \hat{v})\)
\(H:=\operatorname{Insert}(H, \hat{v}, d(\hat{v}, q))\)
end
end
end
return \(\operatorname{TopK}(V, q, k)\)
Learning to route [Baranchuk+, ICML 19]

\section*{Pseudo code}

```

Algorithm 1: GreedySearch $\left(s, \mathrm{x}_{q}, k, L\right)$
Data: Graph G with start node s, query x_{q}, result
size k, search list size $L \geq k$
Result: Result set \mathcal{L} containing k-approx NNs, and
a set \mathcal{V} containing all the visited nodes
begin
initialize sets $\mathcal{L} \leftarrow\{s\}$ and $\mathcal{V} \leftarrow \emptyset$
while $\mathcal{L} \backslash \mathcal{V} \neq \emptyset$ do
let $p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|x_{p}-x_{q}\right\|$
update $\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)$ and
$\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}$
if $|\mathcal{L}|>L$ then
update \mathcal{L} to retain closest L
points to x_{q}
return [closest k points from $\mathcal{L} ; \mathcal{V}$]

```
    DiskANN [Subramanya+, NeurIPS 19]

Algorithm 1 Beam search
Data: graph G, query \(q\), initial vertex \(v_{0}\), output size \(k\) Initialization:
\(\mathrm{V}=\left\{v_{0}\right\} / / \mathrm{a}\) set of visited vertices
\(\mathrm{H}=\left\{v_{0}: d\left(v_{0}, q\right)\right\} / /\) a heap of candidates while has runtime budget do
\[
v_{i}=\text { SelectNearest }(\mathrm{H}, \mathrm{q})
\]
for \(\hat{v} \in \operatorname{Expand}\left(v_{i}, G\right)\) do
```

 if \hat{v}\not\inV then
 V:= Add(V,\hat{v})
    ```
            \(H:=\operatorname{Insert}(H, \hat{v}, d(\hat{v}, q))\)
            end
    end
end
return \(\operatorname{TopK}\) V. q. k)

Learning to route [Baranchuk+, ICML 19]

Visited items are stored in a set

Visited item are simply said to be "visited"; implying an additional hidden data structure (array) Principies are tne same. but smail uetails are aimerent. > Hint: Explicitly state the data structure or not

\section*{Pseudo code}


\section*{Pseudo code}

Algorithm 1. Search-on-Graph \((G, \mathbf{p}, \mathbf{q}, l)\)
size \(l\)
Ensure: \(k\) nearest neighbors of \(\mathbf{q}\)
    1: \(i=0\), candidate pool \(S=\emptyset\)
    \(S\).add(p)
    \(i=\) the id of the first unchecked node \(p_{i}\) in \(S\)
        mark \(\mathbf{p}_{\mathbf{i}}\) as checked
        for all neighbor \(\mathbf{n}\) of \(\mathbf{p}_{\mathbf{i}}\) in \(G\) do
            if \(\mathbf{n}\) has not been visited then
        S.add(n)
        end for
        sort \(S\) in ascending order of the distance to q
        if \(S\).size() \(>l\) then
        size no larger than
    end if
    return the first \(k\) nodes in \(S\)
```

Algorithm 1: GreedySearch $\left(s, \mathrm{x}_{q}, k, L\right)$
Data: Graph G with start node s, query X_{q}, result
size k, search list size $L \geq k$
Result: Result set \mathcal{L} containing k-approx NNs, and
a set \mathcal{V} containing all the visited nodes
begin
initialize sets $\mathcal{L} \leftarrow\{s\}$ and $\mathcal{V} \leftarrow \emptyset$
while $\mathcal{L} \backslash \mathcal{V} \neq \emptyset$ do
let $p * \leftarrow \arg \min _{p \in \mathcal{L} \backslash \mathcal{V}}\left\|x_{p}-x_{q}\right\|$
update $\mathcal{L} \leftarrow \mathcal{L} \cup N_{\text {out }}\left(p^{*}\right)$ and
$\mathcal{V} \leftarrow \mathcal{V} \cup\left\{p^{*}\right\}$
if $|\mathcal{L}|>L$ then
update \mathcal{L} to retain closest L
points to X_{q}
return [closest k points from $\mathcal{L} ; \mathcal{V}$]

```

DiskANN [Subramanya+, NeurIPS 19]

NSG [Cong+, VLDB 19]

\section*{All papers have totally different pseudo code 8}

My explanation was based on NSG, but with slight modifications for simplicity:
Candidates are stored in an automatically-sorted array Termination condition is "all candidates are checked"

\section*{Pseudo code}
\begin{tabular}{|c|c|c|}
\hline Algorithm 1. Search-on-Graph (G,, , q,, ) & Algorithm 1: GreedySearch (s, \(\left.\chi_{q}, k, L\right)\) & Algorithm 1 Beam search \\
\hline \(\overline{\text { Require: graph } G \text {, start node } \mathbf{p} \text {, query point } \mathbf{q} \text {, candidate pool }}\) & Data: Graph \(G\) with start node \(s, q\) query \(x_{q}\), result & Data: graph G , query \(q\), in Initialization: \\
\hline Ensure: knearest neighbors & Result: Result set \(\mathcal{L}\) containing \(k\)-approx NNs , and & \(\mathrm{V}=\left\{v_{0}\right\} / / \mathrm{a}\) ase of visited \\
\hline 2. & a set \(\mathcal{V}\) containing all the visited nod &  \\
\hline  & \({ }_{\text {initialize sets }} \mathcal{L} \leftarrow\{s\}\) and \(\mathcal{V} \leftarrow \emptyset\) & while has runime \\
\hline mark \(\mathbf{p}_{\mathrm{i}}\) as checked & \[
\mathcal{L} \backslash \mathcal{V} \neq \emptyset \text { do }
\] & for \(\hat{i} \in \operatorname{Expand}\left(v_{i}, G\right)\) do \\
\hline for all neighbor \(\mathbf{n}\) of
if \(\mathbf{n}\) has not been & & \\
\hline  & nition would be helpfu & or everyone \\
\hline  & & \\
\hline 13: S.resize(t)/r & return [closest \(k\) points from \(\mathcal{L} ; \mathcal{V}\) ] & return \(\operatorname{TopK}(\mathrm{V}, \mathrm{q}, \mathrm{k})\) \\
\hline  & DiskANN [Subramanya+, NeurlPS 19] & Learning to route \\
\hline NSG [Cong+, VLDB 19] & & \\
\hline \(>\) All papers have tota & different pseudo cod & \\
\hline > Principles are the & e. But small parts a & ery differen \\
\hline Hint: Explicitly stat & data structure or & \\
\hline
\end{tabular}

\section*{\(>\) Background}

\section*{Graph-based search}

Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana

\section*{Discussion}

\section*{Base graph}

\(>\) Although there are many graph algorithms, there exists four base graphs.
\(>\) These base graphs are (1) slow to be constructed, and (2) often too dense
\(>\) Each algorithm often improves one of the base graphs

\section*{Base graph}

Principal:
> Not too dense: Search is slow for dense graph
But moderately dense: Each points should be reachable

\(>\) Although there are many graph algorithms, there exists four base graphs.
\(>\) These base graphs are (1) slow to be constructed, and (2) often too dense
> Each algorithm often improves one of the base graphs

\section*{Base graph}

Principal:
> Not too dense: Search is slow for dense graph
But moderately dense: Each points should be reachable

\(>\) Although there are many graph algorithms, there exists four base graphs.
\(>\) These base graphs are (1) slow to be constructed, and (2) often too dense
> Each algorithm often improves one of the base graphs

\section*{Base graph}

Principal:
\(>\) Not too dense: Search is slow for dense graph
\(\rightarrow\) But moderately dense: Each points should be reachable

(a) DG, degree \(=40\)

(b) RNG, degree \(=24\)


Relative Neighborhood Graph (RNG) [Toussaint, PR 80]
\(>\) Consider \(x\) and \(y\). There must be no points in the "lune"
\(>\) Can cut off redundant edges
\(>A>N\) Not famous in general, but widely used in ANN
se graphs.
> Will review again later

\section*{Base graph}

Principal:
\(>\) Not too dense: Search is slow for dense graph
- But moderately dense: Each points should be reachable

\section*{K Nearest Neighbor Graph}
(). Can limit the number of neighbor (K at most), enforcing a sparsity
© No guaranty for the connectivity

\(>\) Although there are many graph algorithms, there exists four base graphs.
> These base graphs are (1) slow to be constructed, and (2) often too dense
\(>\) Each algorithm often improves one of the base graphs

\section*{Base graph}

Principal:
\(>\) Not too dense: Search is slow for dense graph
\(\rightarrow\) But moderately dense: Each points should be reachable
Minimum Spanning Tree (MST)
(-) Ensure the global connectivity. Low degree.
(2) Lack of shortcuts
(a) DG, degree \(=40\)

(c) KNNG, degree \(=22\)
(b) RNG, degree \(=24\)

(---------------------- 24

(d) MST, degree \(=20\)
\(>\) Although there are many graph algorithms, there exists four base graphs.
\(>\) These base graphs are (1) slow to be constructed, and (2) often too dense
> Each algorithm often improves one of the base graphs

\section*{Graph search algorithms}

Table 2: Summary of important representative graph-based ANNS algorithms
\begin{tabular}{l|l|l|l|l}
\hline Algorithm & Base Graph & Edge & Build Complexity & Search Complexity \\
\hline \hline KGraph [31] & KNNG & directed & \(O\left(|S|^{1.14}\right)\) & \(O\left(|S|^{0.54}\right)^{\ddagger}\) \\
\hline NGT [46] & KNNG+DG+RNG & directed & \(O\left(|S|^{1.14}\right)^{\ddagger}\) & \(O\left(|S|^{0.59}\right)^{\ddagger}\) \\
\hline SPTAG [27] & KNNG+RNG & directed & \(O\left(|S| \cdot \log \left(|S|^{c}+t^{t}\right)\right)^{\dagger}\) & \(O\left(|S|^{0.68}\right)^{\ddagger}\) \\
\hline NSW [65] & DG & undirected & \(O\left(|S| \cdot \log ^{2}(|S|)\right)^{\ddagger}\) & \(O\left(\log ^{2}(|S|)\right)^{\ddagger}\) \\
\hline IEH [54] & KNNG & directed & \(O\left(|S|^{2} \cdot \log (|S|)+|S|^{2}\right)^{\ddagger}\) & \(O\left(|S|^{0.52}\right)^{\ddagger}\) \\
\hline FANNG [43] & RNG & directed & \(O\left(|S|^{2} \cdot \log (|S|)\right)\) & \(O\left(|S|^{0.2}\right)\) \\
\hline HNSW [67] & DG+RNG & directed & \(O(|S| \cdot \log (|S|))\) & \(O(\log (|S|))\) \\
\hline EFANNA [36] & KNNG & directed & \(O\left(|S|^{1.13}\right)^{\ddagger}\) & \(O\left(|S|^{0.55}\right)^{\ddagger}\) \\
\hline DPG [61] & KNNG+RNG & undirected & \(O\left(|S|^{1.14}+|S|\right)^{\ddagger}\) & \(O\left(|S|^{0.28}\right)^{\ddagger}\) \\
\hline NSG [38] & KNNG+RNG & directed & \(O\left(|S|^{\left.\frac{1+c}{c} \cdot \log (|S|)+|S|^{1.14}\right)^{\dagger}}\right.\) & \(O(\log (|S|))\) \\
\hline HCNNG [72] & MST & directed & \(O(|S| \cdot \log (|S|))\) & \(O\left(|S|^{0.4}\right)^{\ddagger}\) \\
\hline Vamana [88] & RNG & directed & \(O\left(|S|^{1.16}\right)^{\ddagger}\) & \(O\left(|S|^{0.75}\right)^{\ddagger}\) \\
\hline NSSG [37] & KNNG+RNG & directed & \(O\left(|S|+|S|^{1.14}\right)\) & \(O(\log (|S|))\) \\
\hline
\end{tabular}
\({ }^{\dagger} c, t\) are the constants. \({ }^{\ddagger}\) Complexity is not informed by the authors; we derive it based on the related papers' descriptions and experimental estimates. See Appendix D for deatils.


Figure 3: Roadmaps of graph-based ANNS algorithms. The arrows from a base graph (green shading) to an algorithm (gray shading) and from one algorithm to another indicate the dependence and development relationships.

\section*{\(>\) Lots of algorithms}
\(>\) The basic structure is same: (1) designing a good graph + (2) beam search

\section*{The initial seed matters}

v.s.


\section*{Start here?}
\(>\) Starting from a good seed \(\Rightarrow\) Shorter path \(\Rightarrow\) Faster search
\(>\) Finding a good seed is also an ANN problem
\(>\) Solve a small ANN problem by tree [NST; Iwasaki+, arXiv 18], hash [Effana; Fu+, arXiv 16] or LSH [LGTM; Arai+, DEXA 21]

\section*{Edge selection: RNG-pruning}

\section*{-}



Probably


RNG-pruning: Moderate number of edges

\section*{Edge selection: RNG-pruning}


\section*{Edge selection: RNG-pruning}

\section*{B \\ C}
(A)

\section*{Edge selection: RNG-pruning}

Find the nearest one to \(A\)

\section*{Edge selection: RNG-pruning}

Find the nearest one to \(A\)


\section*{Edge selection: RNG-pruning}

Find the nearest one to \(A\)


This time, there are no neighbors. So let's make an edge

\section*{Edge selection: RNG-pruning}


\section*{Edge selection: RNG-pruning}

Find the \(2^{\text {nd }}\) nearest one to \(A\)


\section*{Edge selection: RNG-pruning}

Find the \(2^{\text {nd }}\) nearest one to \(A\)


\section*{Edge selection: RNG-druning}

Shortest! Not make an edge
Find the \(2^{\text {nd }}\) nearest one


\section*{Edge selection: RNG-pruning}


Edge selection: RNG-pru Find the 3 rd nearest one to A


\section*{Edge selection: RNG-pru Find the 3 rd nearest one to A}


\section*{Edge selection: RNG-pru Find the \(3^{\text {rd }}\) nearest one to \(A\)}


\section*{Edge selection: RNG-pruning}


E

\section*{Edge selection: RNG-pru find the \(4^{\text {th }}\) nearest one to A}


\section*{Edge selection: RNG-pru find the \(4^{\text {th }}\) nearest one to A}


\section*{Edge selection: RNG-pru find the \(4^{\text {th }}\) nearest one to A}


\section*{Edge selection: RNG-pruning}


\section*{Edge selection: RNG-pruning}

> RNG-pruning is an effective edge-pruning technique, and used in several algorithms
Pros: Implementation is easy
Cons: Require many distance computations

\section*{\(>\) Background}

Graph-based search
\(\checkmark\) Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana

\section*{Discussion}

\section*{Hierarchical Navigable Small World; HNSW}
\(>\) Construct the graph hierarchically [Malkov and Yashunin, TPAMI, 2019]
Fix \#edge per node by RNG-pruning
The most famous algorithm; works very well in real world


\section*{Hierarchical Navigable Small World; HNSW}
> Used in various services
\(\checkmark\) milvus, weaviate, qdrant, vearch, elasticsearch, OpenSearch, vespa, redis, Lucene...
> Three famous implementations
NMSLIB (the original implementation) hnswlib (light-weight implementation from NMSLIB) Faiss (re-implemented version by the faiss team)

\section*{Discussion from Faiss User Forum in FB}

\section*{Note that this discussion was in 2020 and the libraries have been updated a lot since then}

\section*{Any implementation difference between NMSLIB, hnswlib, and faiss-hnsw?}



\section*{Yury Malkov} (the author of HNSW paper)

My view on the implementation differences (I might forgot something):
1) nmslib's HNSW requires internal index conversion step (from nmslib's format to an internal one) to have good performance, and after the conversion the index cannot be updated with new elements. nmslib also has a simple "graph diversification" postprocessing after building the index (controlled by the "post" parameter) and sophisticated queue optimizations which makes it a bit faster compared to other implementations. Another advantage of nmslib is out-of-the box support for large collection of distance functions, including some exotic distances.
2) hnswlib is a header-only C++ library reimplementation of nmslib's hnsw. It does not have the index conversion step, thus - the Pros (compared to nmslib): much more memory efficient and faster at build time. It also supports index insertions, element updates (with incremental graph rewiring - added recently) and fake deletions (mark elements as deleted to avoid returning them during the graph traversal). Cons (compared to nnmslib): It is a tad slower than nmslib due to lack of graph postprocessing and queue optimization; out-of-the box version supports only 3 distance functions, compared to many distance functions in nmslib. Overall, I've tried to keep hnswlib as close as possible to a distributed index (hence no index postprocessing).
3) Faiss hnsw is a different reimplementation. It has its own algorithmic features, like having the first elements in the upper layers on the structure (opposed to random in other implementations). It is a bit more memory efficient compared to hnswlib with raw vectors and optimized for batch processing. Due to the latter it is noticeably slower at single query processing (opposed to nmslib or hnswlib) and generally a bit slower for batch queries (the last time I've tested, but there were exceptions). The implementation also supports incremental insertions (also preferably batched), quantized data and two-level encoding, which makes it much less memory hungry and the overall best when memory is a big concern.

\section*{Hierarchical Navigable Small World; HNSW \\ See the following excellent blog posts for more details}

https://www.pinecone.io/learn/hnsw/ James Briggs, PINECONE, Faiss: The Missing Manual, 6. Hierarchical Navigable Small Worlds (HNSW)

IVFPQ + HNSW for Billion-scale Similarity Search
The best indexing approach for billion-sized vector datasets

https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW Frank Liu, zilliz, Vector Database 101, Hierarchical Navigable Small Worlds (HNSW)

https://towardsdatascience.com /ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e Peggy Chang, IVFPQ + HNSW for Billion-scale Similarity Search

\section*{Navigating Spreading-out Graph (NSG) \({ }_{\text {[ut, }, \text { wo } 89]}\)}
> Monotonic RNG
\(>\) In some cases, slightly better than HNSW
> Used in Alibaba's Taobao
\(>\) Recall the def. of RNG is "no point in a lune"
\(>\) The path " \(\mathrm{p}-\mathrm{q}\) " is ling
Monotonic RNG can make more edges

\title{
Navigating Spreading-out Graph (NSG)
}
\(>\) The original implementation: https://github.com/ZJULearning/nsg
> Implemented in faiss as well
> If you're using faiss-hnsw and need a little bit more performance with the same interface, worth trying NSG

IndexHNSWFlat(int d, int M, MetricType metric) IndexNSGFlat(int d, int R, MetricType metric)

\section*{Neighborhood Graph and Tree (NGT)}
> Make use of range search for construction > Obtain a seed via VP-tree
> Current best methods in ann-benchmarks are NGT-based algorithms
\(>\) Quantization is natively available
> Repository: https://github.com/vahoojapan/NGT
> From Yahoo Japan
> Used in Vald


Image are from the original repository

\section*{DiskANN (Vamana)}
> Vamana: Graph-based search algorithm
\(>\) DiskANN: Disk-friendly search system using Vamana
> From MSR India https://github.com/microsoft/DiskANN

\(>\) Good option for huge data (not the main focus of this talk, though)
\(>\) The same team is actively developing interesting functionalites
\(\checkmark\) Data update: FreshDiskANN [Singh+, arXiv 21]
\(\checkmark\) Filter: Filtered-DiskANN [Gollapudi+, WWW 23]

\section*{\(>\) Background}

Graph-based search
\(\checkmark\) Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana

\section*{Discussion}

\section*{Just NN? Vector DB?}
\(>\) Vector DB companies say "Vector DB is cool"
\(\checkmark\) https://weaviate.io/blog/vector-library-vs-vector-database
\(\checkmark\) https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index\#2
\(\checkmark\) https://zilliz.com/learn/what-is-vector-database
\(>\) My own idea:
If speed is the only concern, just use libraries

Try the simplest numpy-only search

Slow?
```

Try fast algorithm such
as HNSW in faiss

```

Try Vector DB
\(>\) Which vector \(D B\) ? \(\Rightarrow\) No conclusions!
\(>\) If you need a clean \& well designed API, I recommend taking a look at docarray in Jina AI (see Han's talk today!)

\section*{Useful resources}
> Several companies have very useful blog series
> Pinecone Blog
\(\checkmark\) https://www.pinecone.io/learn/
\(>\) Weaviate Blog
\(\checkmark\) https://weaviate.io/blog
\(>\) Jina AI Blog
\(\checkmark\) https://jina.ai/news/
\(>\) Zilliz Blog
\(\checkmark\) https://zilliz.com/blog
\(>\) Romain Beaumont Blog
\(\checkmark\) https://rom1504.medium.com/

\section*{Progress in the last three years}

Three years have passed since my previous tutorial at CVPR 2020

Y. Matasui, "Billion-scale Approximate Nearest Neighbor Search", CVPR 2020 Tutorial
> Slide: https://speakerdeck.com/matsui 528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
> Video: https://youtu.be/SKrHs03i08Q
\(>\) What progress in the last three years in the ANN field? HNSW is still de facto standard; although several papers claim they perform better
\(>\) Disk-based systems are getting attention
\(>\) Vector DB has gained rapid popularity for LLM applications.
\(>\) Because of LLM, we should suppose D as ~1000 (not ~100)
\(>\) GPU-ANN is powerful, but less widespread than I expected; CPUs are more convenient for LLM
\(>\) Competitions (SISAP and bigann-benchmarks)
\(>\) New billion-scale datasets
\(>\) A breakthrough algorithm that goes beyond graph-based methods awaits.

\section*{\(>\) Background}

Graph-based search
\[
\begin{aligned}
& \text { To make graph search } \\
& \text { not a black box }
\end{aligned}
\]

Basic (construction and search)
Observation
Properties
Representative works
HNSW, NSG, NGT, Vamana

\section*{Discussion}

\section*{Reference}

■ [Jégou+, TPAMI 2011] H. Jégou+, "Product Quantization for Nearest Neighbor Search", IEEE TPAMI 2011
■ [Guo+, ICML 2020] R. Guo+, "Accelerating Large-Scale Inference with Anisotropic Vector Quantization", ICML 2020
- [Malkov+, TPAMI 2019] Y. Malkov+, "Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small World Graphs," IEEE TPAMI 2019
- [Malkov+, IS 13] Y, Malkov+, "Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs", Information Systems 2013
- [Fu+, VLDB 19] C. Fu+, "Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graphs", 2019
- [Subramanya+, NeurIPS 19] S. J. Subramanya+, "DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node", NeurIPS 2019
■ [Baranchuk+, ICML 19] D. Baranchuk+, "Learning to Route in Similarity Graphs"
■ [Wang+, VLDB 21] M. Wang+, "A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search", VLDB 2021
- [Toussaint, PR 80] G. T. Toussaint, "The Relative Neighbouhood Graph of A Finite Planar Set", Pattern Recognition 1980
- [Fu+, arXiv 16] C. Fu and D. Cai, "Efanna: An Extremely Fast Approximate Nearest Neighbor Search Algorithm based on knn Graph", arXiv 2016
■ [Arai+, DEXA 21] Y. Arai+, "LGTM: A Fast and Accurate kNN Search Algorithm in High-Dimensional Spaces", DEXA 2021
- [Iwasaki+, arXiv 18] M. Iwasaki and D. Miyazaki, "Optimization if Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data", arXiv 2018
■ [Singh+, arXiv 21] A. Singh+, "FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search", arXiv 2021
- [Gollapudi+, WWW 23] S. Gollapudi+, "Filtered-DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters", WWW 2023

\section*{Reference}

■ [Pinecone] https://www.pinecone.io/
■ [Milvus] https://milvus.io/
■ [Qdrant] https://qdrant.tech/
■ [Weaviate] https://weaviate.io/
■ [Vertex AI Matching Engine] https://cloud.google.com/vertex-ai/docs/matching-engine
■ [Vald] https://vald.vdaas.org/
■ [Vearch] https://vearch.github.io/
■ [Elasticsearch] https://www.elastic.co/ip/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
■ [OpenSearch] https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
■ [Vespa] https://vespa.ai/
■ [Redis] https://redis.com/solutions/use-cases/vector-database/
■ [Lucene] https://lucene.apache.org/core/9 1 0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
■ [SISAP] SISAP 2023 Indexing Challenge https://sisap-challenges.github.io/
■ [Bigann-benchmarks] Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurIPS'21 competition track https://big-ann-benchmarks.com/

\section*{Thank you!}
\begin{tabular}{lll}
\hline Time & Session & Presenter \\
\hline \(13: 30-13: 40\) & Opening & Yusuke Matsui \\
\(13: 40-14: 30\) & Theory and Applications of Graph-based Search & Yusuke Matsui \\
\(14: 30-15: 20\) & A Survey on Approximate Nearest Neighbors in a Billion-Scale Settings & Martin Aumüller \\
\(15: 20-15: 30\) & Break & \\
\(15: 30-16: 20\) & Query Language for Neural Search in Practical Applications & Han Xiao \\
\hline
\end{tabular}

\section*{Acknowledgements}
> I would like to express my deep gratitude to Prof. Daichi Amagata, Naoki Ono, and Tomohiro Kanaumi for reviewing the contents of this tutorial and providing valuable feedback.
> This work was supported by JST AIP Acceleration Research JPMJCR23U2, Japan.

\title{
Billion-Scale Nearest Neighbor Search
}

CVPR 2023 Tutorial on Neural Search in Action, Part 2

Martin Aumüller
IT University of Copenhagen, maau@itu.dk

IT UNIVERSITY OF CPH

\section*{Martin Aumüller}

Associate Professor, IT University of Copenhagen, Denmark (3) http://itu.dk/people/maau
© @maumueller
\(\checkmark\) Similarity search using hashing
\(\checkmark\) Benchmarking \& workload generation


\section*{PUFFINN}
[Aumüller+, ESA 2019]
Proceedings of Machine Learning Research 176:177-189, 2022 NeurIPS 2021 Competition and Demonstration Track

Results of the NeurIPS'21 Challenge on Billion-Scale
Approximate Nearest Neighbor Search

Harsha Vardhan Simhadri \({ }^{1}\)
George Williams \({ }^{2}\)
Martin Aumüller \({ }^{3}\)
Matthijs Douze \({ }^{4}\)
Artem Babenko \({ }^{5}\)
Dmitry Baranchuk \({ }^{5}\)
Qi Chen \({ }^{1}\)
Lucas Hosseini \({ }^{4}\)
Ravishankar Krishnaswamy \({ }^{1}\)
Gopal Srinivasa \({ }^{1}\)
Suhas Jayaram Subramanya \({ }^{6}\)
Jingdong Wang \({ }^{7}\)
harshasi@microsoft.com GWILLIAMS@IEEE.ORG
maAu@Itu.DK

Billion-Scale ANN Challenge

\section*{From Million-Scale to Billion-Scale ANN}


\section*{From Million-Scale to Billion-Scale ANN}

\section*{Rules}
- Index building + searching single-threaded
- 2 hours time limit, container killed afterwards
relax the timeout setting to 24 hours for better qps-recall performance Oclosed


\section*{Q: Scaling up by 1000x?}

2 hours \(\rightarrow 2000\) hours \(\sim 83\) days

\section*{Billion-Scale ANN Challenge [Simhadrit, NeurIPs 2021]}


Many entries did not improve on baseline by much.

\section*{The ANN search pipeline}

Data vectors
Index structure (Graph, IVF, Tree)


\section*{<tl;dnl> (Roadmap)}

Can store data + High recall?

DiskANN/HNSW/...
(parameter selection difficult)

IVF (or Graph-Based)
FAISS-IVF (better build times
+ easy parameter selection)

Compressed vectors
(RAM) + graph/vectors (SSD)
DiskANN

IVF on compressed vectors

FAISS-IVF (forget original vectors)

\section*{Billion-Scale Datasets}

\section*{Meta AI: Image descriptors for copy detection}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Dataset & Datatype & Dimensions & Distance & Range/k-NN & Base data & Sample data & Query data & Ground truth & Release terms \\
\hline BIGANN & uint8 & & L2 & k-NN & 1B points & 100M base points & 10K queries & link & CC0 \\
\hline \begin{tabular}{l}
Facebook \\
SimSearchNet++*
\end{tabular} & uint8 & 256 & L2 & Range & 1B points & N/A & 100k queries & link & CC BY-NC \\
\hline Microsoft Turing-ANNS* & float32 & 100 & L2 & k-NN & 1B points & N/A & 100K queries & link & link to terms \\
\hline Microsoft SPACEV* & int8 & \[
100
\] & L2 & k-NN & 1B points & 100M base points & 29.3K queries & link & O-UDA \\
\hline Yandex DEEP & float32 & & L2 & k-NN & 1B points & 350M base points & 10K queries & link & CC BY 4.0 \\
\hline Yandex Text-to-Image* & float32 & 200 & er-product & k-NN & 1B points & 50M queries & 100K queries & link & CC BY 4.0 \\
\hline
\end{tabular}

\section*{800 GB}

Microsoft Bing: Search string \(\rightarrow\) Web documents
https://big-ann-benchmarks.com/ NeurIPS 2021 Challenge


\section*{High Resources, High Recall}

Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

\section*{Scaling Graph-Based Approaches}

\section*{Scaling Graph-Based ANNS Algorithms to Billion-Size Datasets: A Comparative Analysis}

\section*{Magdalen Dobson \\ Carnegie Mellon University mrdobson@cs.cmu.edu}

Zheqi Shen
UC Riverside zshen055@ucr.edu

Guy E. Blelloch Carnegie Mellon University guyb@cs.cmu.edu

Laxman Dhulipala University of Maryland laxman@umd.edu

> Yan Gu UC Riverside ygu@cs.ucr.edu

Harsha Vardhan
Simhadri
Microsoft Research harshasi@microsoft.com

\section*{Abstract}

Algorithms for approximate nearest-neighbor search (ANNS) have been the topic of significant recent interest in the research community. However, evaluations of such algorithms are usually restricted to a small number of datasets with millions or tens of millions of points, whereas real-world applications require algorithms that work on the scale of billions of points. Furthermore, existing evaluations of ANNS algorithms are typically heavily focused on measuring and optimizing for queries-per-second (QPS) at a given accuracy, which can be hardware-dependent and ignores important metrics such as build time.

Solving this problem is known as \(k\)-nearest neighbor search, and is notoriously hard to solve exactly in high-dimensional spaces [18]. Since solutions for most real-world applications can tolerate small errors, most deployments focus on the approximate nearest neighbor search (ANNS) problem, which has been widely applied as a core subroutine in fields such as search recommendations, machine learning, and information retrieval [68]. Modern applications are placing new demands on ANNS data structures to be scalable to billions of points [61], support streaming insertions and deletions [42, 62, 66], work on a wide variety of difficult datasets [43], and support efficient nearest neighbor queries as well as range

Yihan Sun
UC Riverside
yihans@cs.ucr.edu

\section*{Machines}
- Azure Msv2 (4 Xeon, 192 vCPUs, 2 TB RAM), \$384 USD/day
- Azure Ev5 (2 Xeon, 96 vCPUs, 672 GB RAM), \$144 USD/day

\section*{Scaling Graph-Based Approaches}

\section*{- Recap}
- Vectors are nodes
- Connected to "diverse set of similar points" + long range edges
- Incremental build
- Use search algorithm to find potential candidate neighbors

- Prune these candidates

\section*{Index size?}
~1B x "avg. degree of node"
Practically all algorithms enforce user-set bound!

\section*{Faster build?}

Smaller target degree + smaller beam width

\section*{Tradeoffs?}

Need larger beam width to compensate for "worse build graph"

\section*{Parallelizing insertion}

\section*{- Order all points arbitrarily}
- For each point:
- Carry out greedy search for nearest neighbor in "current graph"
- Connect to pruned set of vertices found during the NN search

```

Algorithm 2: insert (p, s, R, L).
Input: Point p, starting point s, beam width L, degree bound R.
Output: Point p is inserted into the nearest neighbor graph.
$\mathcal{V}, \mathcal{K} \leftarrow$ greedySearch $(p, s, L, 1)$
$2 \mathrm{~N}_{\text {out }}(p) \leftarrow \operatorname{prune}(\mathcal{V})$
3 for $q \in N_{\text {out }}(p)$ do
$\mathrm{N}_{\text {out }}(q) \leftarrow \mathrm{N}_{\text {out }}(q) \cup\{p\}$
if $\left|N_{\text {out }}(q)\right|>R$ then
$\mathrm{N}_{\text {out }}(q) \leftarrow \operatorname{prune}\left(\mathrm{N}_{\text {out }}(q)\right)$

Input: Point set \mathcal{P}, starting point s, beam width L, degree bound R. Output: A nearest neighbor graph consisting of all points in \mathcal{P} and start point s.
$1 i \leftarrow 0$
2 while $2^{i} \leq|\mathcal{P}|$ do
"prefix doubling"
parallel for $j \in\left[2^{i}, 2^{i+1}\right)$ do
$\mathcal{V}, \mathcal{K} \leftarrow$ greedySearch $(\mathcal{P}[j], s, L)$
$\mathrm{N}_{\text {out }}(\mathcal{P}[j]) \leftarrow \operatorname{prune}(\mathcal{V})$
$\mathcal{B} \leftarrow \bigcup_{j=2^{i}}^{2^{i+1}-1} \mathrm{~N}_{\mathrm{out}}(P[j])$
parallel for $b \in \mathcal{B}$ do
// Find \mathcal{N} as all points in the current batch that added b as their neighbors
$\mathcal{N} \leftarrow\left\{\mathcal{P}[j] \mid j \in\left[2^{i}, 2^{i+1}\right) \wedge b \in \mathrm{~N}_{\mathrm{out}}(\mathcal{P}[j])\right\}$
$\mathrm{N}_{\text {out }}(b) \leftarrow \mathrm{N}_{\text {out }}(b) \cup \mathcal{N}$
if $\left|N_{\text {out }}(b)\right|>R$ then $\mathrm{N}_{\text {out }}(b) \leftarrow \operatorname{prune}\left(\mathrm{N}_{\text {out }}(b)\right)$ $i \leftarrow i+1$

Understanding parameters

- Index building

- Degree bound R
- upper limit on index size
- Beam width L (building)
- better neighbors
- Pruning factor (α)
- "diversified neighbors"
- Searching
- Beam width $R_{\text {search }}$

Sensitive to parameter choices \& they are difficult to choose!

DiskANN The main parameters for the DiskANN index build are (1) the degree bound R, (2) the beam width L used during insertion, and (3) the pruning parameter α. In our experiments, we found that no single parameter setting was optimal for all recall regimes, and that there were significant tradeoffs in other recall values when maximizing for recall above .99 ; thus we chose to use parameters optimized for the $.94-.97$ range. Note that for TEXT2IMAGE, which minimizes negative inner product, the α value must be less than one in order to select for a denser graph.

[^1]
Build times \& scaling

| BIGANN MSSPACEV | | | | | TEXT2IMAGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SSNPP | | | | | |
| DiskANN | 11.0 | Oi | 15.1 | 61.6 | 83.1 |
| HNSW | 9.2 | | 6.7 | 14.9 | 91.6 |
| HCNNG | 8.6 | 15.8 | 21.4 | 19.0 | |
| FAISS | 5.2 | 4.1 | 4.5 | 4.5 | |
| FALCONN | 1.75 | 1.12 | 1.45 | 1.42 | |

Table 1: Build times (hours) on billion-scale datasets.

10x increase \rightarrow 11-12x build time increase

Parallelizing search

- Usually parallelization over queries (inter-query parallelism)
- Not so much in focus
- Beam width selection: "trial-and-error"

(b) QPS for fixed recall (.8) as dataset size increases.

Summary

- Advantages

- Good scaling of \#candidates
- Unparalleled performance in highrecall regime
- Disadvantages
- Influence of parameter choices difficult to predict
- High index building times (but "almost out-of-box")

(c) Distance comparisons per query for fixed recall (.8) as the dataset size increases.

How to get started (DiskANN)

FROM ubuntu:jammy

RUN apt update
RUN apt install -y software-properties-common
RUN add-apt-repository -y ppa:git-core/ppa
RUN apt update
RUN DEBIAN_FRONTEND=noninteractive apt install -y git make cmake g++ libaio-dev libgoogle-perftools-dev
libunwind-dev clang-format libboost-dev
libboost-program-options-dev libmkl-full-dev
libcpprest-dev python3.10

RUN git clone https://github.com/microsoft/DiskANN.git WORKDIR /home/app/DiskANN
RUN pip3 install virtualenv build
RUN python3 -m build
RUN pip install dist/diskannpy-0.5.
0-cp310-cp310-linux_x86_64.whl
WORKDIR /home/app

```
import numpy as np
import diskannpy
class diskann
    def fit(self, ds, L, R)
        """Build index for dataset `ds` with `R` degree, `L` beam width."""
    diskannpy.build_memory_index(
        data = ds.get_dataset_fn(),
        distance_metric = 'l2',
        vector_dtype = np.int8,
        complexity=L,
        graph_degree=R,
        num_threads = 64,
        alpha=1.2,
        use_pq_build=False,
        num_pq_bytes=0, #irrelevant given use_pq_build=False
        use_opq=False
    )
    print('Loading index..')
    self.index = diskannpy.StaticMemoryIndex(
        distance_metric = 'l2',
        vector_dtype = np.int8
        num_threads = 64, #to allocate scratch space for up to 64 search threads
        initial_search_complexity = 100
    )
    print('Index ready for search')
def query(self, X, k, Ls):
    """Carry out a batch query for k-NN of query set X."""
    self.res, self.query_dists = self.index.batch_search(X, k, Ls, 64)
```

Official Documentation: $\underline{\text { https://github.com/Microsoft/DiskANN }}$
Python examples: $\underline{\text { https://github.com/harsha-simhadri/big-ann-benchmarks, }}$

High Resources, Low Recall

Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

IVF-based solutions ("inverted file index")
2 steps:
(1) Train partition
(2) Add vectors

Finding a space partition: Clustering-based (k-means), LSH-based, ...

IVF: insert a vector

Cells: all points closest to given centroid ("Voronoi cells") Build parameter: \#clusters

IVF: search

Find the nearest vector to \boldsymbol{q}

Search parameter: \#clusters to inspect
Candidates: \#clusters inspected * avg. cluster size

How to choose parameters?

- Goal: inspect 0.0001% of dataset for 1 B vectors $\rightarrow 1000$ points
- Back-of-the-envelope calculation:
- ~1000 points per cluster
- \rightarrow need a million clusters
- Making this practical
- Build an index on centroids
- Standard solution
- Build a graph on top of the centroids
- Alternatives: hierarchical k-means

(c) Distance comparisons per query for fixed recall (.8) as the dataset size increases.

IVF-based approaches

- Advantages

- Predictable index size and relatively easy to understand parameters
- Strong implementations available
- GPU-based solutions
- Disadvantages
- Many candidates necessary in the high-recall regime
- Quantization necessary to limit impact of these distance computations

(a) BIGANN-1B

(b) MSSPACEV-1B

How to get started?

日 facebookresearch / faiss Public

- Install via conda install -c pytorch faiss-cpu

```
nlist = 100
k = 4
quantizer = faiss.IndexFlatL2(d) # the other index
index = faiss.IndexIVFFlat(quantizer, d, nlist)
assert not index.is_trained
index.train(xb)
assert index.is_trained
index.add(xb)
D, I = index.search(xq, k)
print(I[-5:])
index.nprobe = 10
D, I = index.search(xq, k)
print(I[-5:])
```


add may be a bit slower as well

```
# add may be a bit slower as well
# actual search
# actual search
# neighbors of the 5 last queries
# neighbors of the 5 last queries
# neighbors of the 5 last queries
```


neighbors of the 5 last queries

```
```


default nprobe is 1, try a few more

```
```


default nprobe is 1, try a few more

```
index = faiss.index_factory(128, "PCA64,IVF16384_HNSW32,Flat")

\section*{Billion-Scale ANN with limited resources}

\section*{Interlude: Vector Quantization}

\section*{Quantization techniques}
\begin{tabular}{c|c|c|c|c} 
& \multicolumn{2}{c}{ BIGANN } & MSSPACEV & TEXT2IMAGE \\
\hline DiskANN & \(R=64, L=128, \alpha=1.2\) & \(R=64, L=128, \alpha=1.2\) & \(R=64, L=128, \alpha=.9\) & \(R=150, L=400, \alpha=1.2\) \\
\hline HNSW & \(m=32, e f c=128, \alpha=.82\) & \(m=32, e f c=128, \alpha=.83\) & \(m=32, e f c=128, \alpha=1.1\) & \(m=75, e f c=400, \alpha=.82\) \\
\hline HCNNG & \(T=30, L s=1000, s=3\) & \(T=50, L s=1000, s=3\) & \(T=30, L s=1000, s=3\) & \(T=50, L s=1000, s=3\) \\
\hline \multirow{2}{*}{ pyNNDescent } & \(K=40, L s=100\), & \(K=60, L s=100\), & \(K=60, L s=100\), & \(K=60, L s=1000\), \\
& \(T=10, \alpha=1.2\) & \(T=10, \alpha=1.2\) & \(T=10, \alpha=.9\) & \(T=10, \alpha=1.4\) \\
\hline \multirow{3}{*}{ FAISS } & OPQ64_128, & OPQ64_128, & OPQ64_128, & OPQ64_128, \\
& IVF1048576_HNSW32, & IVF1048576_HNSW32, & IVF1048576_HNSW32, & IVF1048576_HNSW32, \\
& PQ128x4fsr & PQ64x4fsr & PQ128x4fsr & PQ64 \\
\hline
\end{tabular}

Cluster with 1M centroids, using HNSW to index the centroids

\section*{Basic idea}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & (1) & (2) & & (N) & \(\rightarrow\) Need \(4 N D\) byte to represent \(N\) real-valued vectors \\
\hline & [0.54] & [0.62] & & [3.34] & using floats \\
\hline D & 2.35 & 0.31 & & 0.83 & If \(N\) or \(D\) is too large, we cannot read the data on memo \\
\hline D & \(\downarrow\left[\begin{array}{l}0.82 \\ 0.42\end{array}\right]\) & \(\left[\begin{array}{l}0.34 \\ 1.63\end{array}\right]\) & & \(\left[\begin{array}{l}0.62 \\ 1.45\end{array}\right]\) & \(\checkmark\) E.g., 512 GB for \(D=128, N=10^{9}\) \\
\hline
\end{tabular}

Convert each vector to a short-code
\(>\) Short-code is designed as memory-efficient
\(\checkmark\) E.g., 4 GB for the above example, with 32-bit code

\(>\) Run search for short-codes

\section*{Basic idea}


\section*{Quantization Techniques}
- Low precision
- work with fp16 instead of \(32 / 64\) bit floats
- Scalar quantization
- split up [min, max] into \(K\) equidistant parts


Interval [0,3] split up into 6 parts

- (binary/locality-sensitive) Hashing
- Apply hashing to embed into lower dimensional space
- Product quantization

\section*{Product Quantization; PQ [Jegout, TPAM 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector
\[
D\left[\begin{array}{c}
\text { vector; } x \\
\uparrow\left[\begin{array}{l}
0.34 \\
0.22 \\
0.68 \\
1.02 \\
0.03 \\
0.71
\end{array}\right]
\end{array}\right.
\]


\section*{Product Quantization; PQ [Jegout, TPAM 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector

\section*{vector; \(\boldsymbol{x}\) \\ }


\section*{Product Quantization; PQ [Jegout, TPAM 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector


\section*{Product Quantization; PQ [Jégou, tРАМі 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector


\section*{Product Quantization; PQ [Jégou, tРАМі 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector


\section*{Product Quantization; PQ [Jégou, тРАмI 2011]}
\(>\) Split a vector into sub-vectors, and quantize each sub-vector

\(>\) Simple
\(>\) Memory efficient
Bar notation for PQ-code:
\[
x \in \mathbb{R}^{D} \mapsto \bar{x} \in\{1, \ldots, 256\}^{M}
\]
\(>\) Distance can be estimated

\section*{Product Quantization: Memory efficient}


\section*{Product Quantization: Memory efficient}


\section*{Product Quantization: Memory efficient}


\section*{Product Quantization: Memory efficient}

\[
\begin{aligned}
& \text { e.g., } D=128 \\
& 128 \times 32=4096 \text { [bit] }
\end{aligned}
\]

\section*{Product Quantization: Distance estimation}

Database vectors
Query; \(\boldsymbol{q} \in \mathbb{R}^{D}\)
\[
\left[\begin{array}{l}
0.34 \\
0.22 \\
0.68 \\
1.02 \\
0.03 \\
0.71
\end{array}\right]
\]

\section*{\(x_{1}\)} \(x_{2}\) \(\boldsymbol{x}_{N}\)
\(\left[\begin{array}{l}0.54 \\ 2.35 \\ 0.82 \\ 0.42 \\ 0.14 \\ 0.32\end{array}\right]\left[\begin{array}{l}0.62 \\ 0.31 \\ 0.34 \\ 1.63 \\ 1.43 \\ 0.74\end{array}\right] \quad \cdots \quad\left[\begin{array}{l}3.34 \\ 0.83 \\ 0.62 \\ 1.45 \\ 0.12 \\ 2.32\end{array}\right]\)

\section*{Product Quantization: Distance estimation}

Database vectors
Query; \(\boldsymbol{q} \in \mathbb{R}^{D}\)


\section*{Product Quantization: Distance estimation}

Query; \(\boldsymbol{q} \in \mathbb{R}^{D}\)
\[
\left[\begin{array}{l}
0.34 \\
0.22 \\
0.68 \\
1.02 \\
0.03 \\
0.71
\end{array}\right]
\]


\section*{Product Quantization: Distance estimation}

Query; \(\boldsymbol{q} \in \mathbb{R}^{D}\)
\begin{tabular}{|c|c|c|c|}
\hline \(\left[\begin{array}{l}0.34 \\ 0.22\end{array}\right]\) & & \(\overline{x_{1}}\) & \(\overline{x_{2}}\) \\
\hline 0.22 & Linear & ID: 42 & ID: 221 \\
\hline 0.68 & Scan & ID: 67 & ID: 143 \\
\hline 1.02 & Through
Candidates & ID: 92 & ID: 34 \\
\hline 0.03 & & & \\
\hline [0.71 \(]\) & & & \\
\hline
\end{tabular}

\section*{Asymmetric distance}
\(>d(\boldsymbol{q}, \boldsymbol{x})^{2}\) can be efficiently approximated by \(d_{A}(\boldsymbol{q}, \overline{\boldsymbol{x}})^{2}\)
\(>\) Lookup-trick: Looking up pre-computed distance-tables
\(>\) Candidate selection by \(d_{A}\)
def train(vec, M):
Ds = int (vec.shape[1] / M) \# Ds = D / M
\# codeword[m] [k] \(=\mathbf{c}^{m}\)
codeword \(=\) np.empty \(((M, 256\), Ds \()\), np.float 32\()\)
for \(m\) in range (M):
vec_sub \(=\) vec [:, m * Ds : \((m+1)\) * Ds]
codeword[m], label = kmeans2(vec_sub, 256)
return codeword
def encode(codeword, vec): \# vec \(=\left\{\mathbf{x}_{n}\right\}_{n=1}^{N}\)
M, _K, Ds = codeword. shape
\# pqcode \([\mathrm{n}]=\mathbf{i}\left(\mathbf{x}_{n}\right)\), pqcode [n] [m] \(=i^{m}\left(\mathbf{x}_{n}\right)\)
pqcode \(=\) np.empty ((vec.shape[0], M), np.uint8)
for \(m\) in range (M): \# Eq. (2) and Eq. (3)
vec_sub \(=\) vec[:, m * Ds: \((m+1)\) * Ds]
pqcode[:, m], dist \(=\mathrm{vq}(\mathrm{vec}\) _sub, codeword[m])
return pqcode
def search(codeword, pqcode, query):
M, _K, Ds = codeword.shape
\# dist_table \(=D(m, k)\)
dist_table \(=\) np.empty \(((M, 256)\), np.float32)
for \(m\) in range ( \(M\) ):
query_sub \(=\) query \([m\) * Ds: \((m+1)\) * Ds]
dist_table[m, :] = cdist([query_sub],
\(\hookrightarrow\) codeword \([\mathrm{m}]\), 'sqeuclidean' [0] \# Eq. (5)
\# Eq. (6)
dist \(=\) np.sum(dist_table[range(M), pqcode], axis=1)
return dist
if
__name___ == "__main__"
\# Read vec_train, \(\overline{\operatorname{vec}}\left(\left\{\mathbf{x}_{n}\right\}_{n=1}^{N}\right)\), and query (y)
\(M=4\)
codeword = train(vec_train, M)
pqcode \(=\) encode (codeword, vec)
dist \(=\) search (codeword, pqcode, query)
print(dist)
\(>\) Only tens of lines in Python
\(>\) Pure Python library: nanopq https://github.com/matsui528/nanopq
> pip install nanopq

Rotate vectors to allow for better product quantization [Ge+14]

BIGANN MSSPACEV TEXT2IMAGE
SSNPP
\begin{tabular}{c|c|c|c|c}
\hline DiskANN & \(R=64, L=128, \alpha=1.2\) & \(R=64, L=128, \alpha=1.2\) & \(R=64, L=128, \alpha=.9\) & \(R=150, L=400, \alpha=1.2\) \\
\hline HNSW & \(m=32, e f c=128, \alpha=.82\) & \(m=32, e f c=128, \alpha=.83\) & \(m=32, e f c=128, \alpha=1.1\) & \(m=75, e f c=400, \alpha=.82\) \\
\hline HCNNG & \(T=30, L s=1000, s=3\) & \(T=50, L s=1000, s=3\) & \(T=30, L s=1000, s=3\) & \(T=50, L s=1000, s=3\) \\
\hline \multirow{2}{*}{ pyNNDescent } & \(K=40, L s=100\), & \(K=60, L s=100\), & \(K=60, L s=100\), & \(K=60, L s=1000\), \\
& \(T=1 \varnothing, \alpha=1.2\) & \(T=10, \alpha=1.2\) & \(T=10, \alpha=.9\) & \(T=10, \alpha=1.4\) \\
\hline \multirow{3}{*}{ FAISS } & OPQ64_128, & OPQ64_128, & OPQ64_128, & OPQ64_128, \\
& IVF1048576_HNSW32, & IVF1048576_HNSW32, & IVF1048576_HNSW32, & IVF1048576_HNSW32, \\
& PQ128x4fsr & PQ64x4fsr & PQ128x4fsr & PQ64 \\
\hline
\end{tabular}
- Compress vector into 128 blocks,
- each with 2^4 = 16 codewords, use SIMD-based asymmetric distance

Cluster with 1 M centroids, using HNSW to index the centroids

\section*{The ANN search pipeline}

Data vectors Index structure (Graph, IVF, Tree)

\section*{BUILD}


SEARCH
\(\left[\begin{array}{l}0.23 \\
3.15 \\
0.65 \\
1.43\end{array}\right] \quad\)\begin{tabular}{l} 
Candidate \\
selection \\
\(\boldsymbol{q} \in \mathbb{R}^{D}\)
\end{tabular}\(\sim_{\text {~milliseconds }}\)


\section*{The ANN search pipeline (with quantization)}

Data vectors
Index structure (Graph, IVF, Tree)



\section*{Index on Quantized Vectors}

SCANN: Guo+, ICML 2020.
- Learn codes, represent each vector by its PQ code
- Code size: 32-64 byte
- Can store the compressed vectors in memory
- Lookup tables in cache/avx registers
- Index cost on top
- Graph: 1G * degree_bound
- Typically requires small degree_bounds (not well studied?)
- IVF: 1M centroids + index on centroids on top of vectors
- Usually works well


Recall quality very data dependent!

\section*{Out-of-Memory index + High-Recall (DiskANN)}


\section*{DiskANN out-of-memory} RAM

32+ GB


\section*{Expanding a node:}
1. Read adjacent nodes from SSD (+ fetch original vector "for free")
2. Compute distances of query to neighbors (using PQ codes)
(Very) recent developments

\section*{A new graph approach?}
- Hierarchical tree, leaves are HNSW graphs
- Interesting quantization technique motivated by time series
- Better build times, good query ELPIS: Graph-Based Similarity Search for Scalable Data Science
\[
\begin{gathered}
\text { Ilias Azizi } \\
\text { UM6P, Université Paris Cité } \\
\text { ilias.azizi@um6p.ma }
\end{gathered}
\] ABSTRACT
The recent popularity of learned embeddings has fueled the growth of massive collections of high-dimensional (high-d) vectors that model complex data. Finding similar vectors in these collections is at the core of many important and practical data science ap plications. The data series community has developed tree-based
similarity search techniques that outperform state-of-the-art methods on large collections of both data series and generic high-d vectors, on all scenarios except for no-guarantees \(n g\)-approximate search, where graph-based approaches designed by the high-d vec
tor community achieve the best performance. However, building

Karima Echihabi UM6P UM6P
i@um6p.ma
ystems of online billion-dollar enterprises [76, 117], and enabled [11 tion \([11-14,75,88,89]\). Similarity search has also been exploited in rogram dependencies and \(/\) /O usage and in cybersecurrity to profile etwork usage and detect intrusione and mare [31] Similarity search finds the most similar objects in a dataset to a given query object. It is often reduced to \(k\)-nearest neighbor ( \(k\)-NN) search, which represents the objects as points in \(R^{d}\) space, and re turns the \(k\) closest vectors in the dataset \(\$\) to a given query vector \(V_{Q}\) according to some distance measure, such as the Euclidean distance.

To appear at VLDB 2023,

\section*{Automated Parameter tuning}

\section*{- Finding build/search parameters by constrained optimization \\ - Build on top of ScaNN}

Automating Nearest Neighbor Search Configuration with Constrained Optimization

\author{
Philip Sun, Ruiqi Guo \& Sanjiv Kumar \\ Google Research \\ New York, NY \\ \{sunphil, guorq, sanjivk\}@google.com \\ ICLR23
}

Abstract

The approximate nearest neighbor (ANN) search problem is fundamental to ef ficiently serving many real-world machine learning applications. A number of techniques have been developed for ANN search that are efficient, accurate, and scalable. However, such techniques typically have a number of parameters that affect the speed-recall tradeoff, and exhibit poor performance when such parameters aren't properly set. Tuning these parameters has traditionally been a manual process, demanding in-depth knowledge of the underlying search algorithm. This is becoming an increasingly unrealistic demand as ANN search grows in popu-

(b) Microsoft Turing-ANNS

(b) Microsoft Turing-ANNS

\section*{Filtered search}
- Setting
- Vectors have associated metadata
- Example, YFCC: tags, gps, date

freight
freight
country_GB
country_GB
- Query
- Find the most similar images to this images that were taken with a Sony Camera in 2017 in Vancouver
database


\section*{Out-of-distribution queries}
- Setting
- Vectors are image embeddings
- Queries are text embeddings

(c) Yandex Text-to-Image


Yandex, Text-2-Image dataset

\section*{Streaming settings}
- Setting
- Many applications (search engine, recommender system) need to handle updates
- Daily rebuilds often too expensive

\author{
https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx
}
\begin{tabular}{l|l|l|l}
\cline { 2 - 4 } & Web Search \& Reco & Email Search & Enterprise search \\
\hline Index Size & \(\sim 1\) trillion pages & \begin{tabular}{l}
100 s of trillions of \\
sentences
\end{tabular} & \begin{tabular}{l} 
Trillions of paragraphs \\
across documents
\end{tabular} \\
\hline \begin{tabular}{l} 
Update Rate \\
(latency <1s)
\end{tabular} & Billions of updates/day & \begin{tabular}{l} 
Ingest new email, \\
Purge deletes
\end{tabular} & Handle \(>1 \%\) change/day \\
\hline \begin{tabular}{l} 
Search \\
latency/QPS
\end{tabular} & \begin{tabular}{l}
\(<10 \mathrm{~ms}\) \\
\(10-100 \mathrm{~K}+\) Queries/sec
\end{tabular} & 100 s of ms & \(10-100 \mathrm{~ms}\) \\
\hline
\end{tabular}
- Question: Clever update strategies?

\section*{NeurIPS 2023 Challenge: Practical Vector Search}

\section*{- 4 Tasks (10M vectors)}
- Filtered ANN
- Streaming ANN
- Out-of-distribution ANN
- ANN on sparse data
- Strong baselines based on IVF (faiss) and graphs (DiskANN)
- Cloud credits available for testing (screening process)

Practical Vector Search Challenge 2023

Harsha Vardhan Simhadri*
Microsoft Research India
harshasi@microsoft.com
Dmitry Baranchuk
Yandex
dbaranchuk@yandex-team.ru

Amir Ingber Pinecone.io
ingber@pinecone.io

Martin Aumüller IT University of Copenhagen maau@itu.dk

Matthijs Douze Meta AI Research matthijs@meta.com

\section*{Frank Liu} Zilliz

Edo Liberty
Pinecone.io edo@pinecone.io

George Williams George Wiliams gwilliams@ieee.org

Official
announcement
soon!

https://matsui528.github.io/cvpr2023_tutorial_neural_search/

\section*{https://big-ann-benchmarks.com}

Neural Search in Action

\section*{Representing， transiting \＆ searching multimodal data}

Han Xiao，Founder of Jina AI
ジ＠hxiao ツ＠JinaAI＿

\section*{About me \& Jina Al}

Han Xiao, Founder \& CEO of Jina AI. Based in Berlin, Germany.
- ML PhD in 2014 TU Munich; Zalando Research; Tencent AI Lab; Creator of Fashion-MNIST.

Jina Al
- Founded in 2020, focus on multimodal Al search \& create
- Opensource contributor: Jina, DocArray (Linux Foundation), CLIP-as-service, ...
- 60 people, HQ in Berlin. Offices in Beijing, Shenzhen.
\begin{tabular}{|c|c|c|}
\hline Forbes & \({ }^{\text {A }}\), m & \\
\hline A130 & 100 & 100 \\
\hline
\end{tabular}

Jina AI Tech Spectrum

Prompt tuning
the process of crafting and refining the input prompts in order to guide its output towards specific, desired responses.
the deployment of fine-tuned models in a production environment, usually requiring substantial resources such as GPU hosting. MLOps, emphasizing the serving of mid-size to large models in a scalable, efficient, and reliable manner.

\section*{Model serving}

Also known as fine-tuning, involves adjusting the parameters of a pre-trained model on a new, often task-specific dataset to improve its performance and adapt it to a specific application.


\section*{Agenda}
- Preliminary: multimodal AI
- Opensource package: DocArray
- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data
- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ concepts like data classes could be helpful.

\title{
Preliminary: from unimodal to multimodal
}


\section*{From unimodal to multimodal}
"modality" roughly means "data type".
- Unimodal Al refers to applying Al to one specific type of data.
- Most early machine learning works fall into this category.
- Even today, when you open any machine learning literature, unimodal Al is still the majority of the content.

\section*{.jine}

\section*{Unimodal - NLP}

LDA was the 2010's transformer
\begin{tabular}{llll} 
"Arts" & "Budgets" & "Children" & "Education" \\
\hline & & & \\
NEW & MILLION & CHILDREN & SCHOOL \\
FILM & TAX & WOMEN & STUDENTS \\
SHOW & PROGRAM & PEOPLE & SCHOOLS \\
MUSIC & BUDGET & CHILD & EDUCATION \\
MOVIE & BILLION & YEARS & TEACHERS \\
PLAY & FEDERAL & FAMILIES & HIGH \\
MUSICAL & YEAR & WORK & PUBLIC \\
BEST & SPENDING & PARENTS & TEACHER \\
ACTOR & NEW & SAYS & BENNETT \\
FIRST & STATE & FAMILY & MANIGAT \\
YORK & PLAN & WELFARE & NAMPHY \\
OPERA & MONEY & MEN & STATE \\
THEATER & PROGRAMS & PERCENT & PRESIDENT \\
ACTRESS & GOVERNMENT & CARE & ELEMENTARY \\
LOVE & CONGRESS & LIFE & HAITI
\end{tabular}

JMLR: Workshop and Conference Proceedings 13: 63-78
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8-10, 2010.

Efficient Collapsed Gibbs Sampling For Latent Dirichlet Allocation

\section*{Han Xiao}

Thomas Stibor
Technical University of Munich, GERMANY

Editor: Masashi Sugiyama and Qiang Yang

\section*{Abstract}

Collapsed Gibbs sampling is a frequently applied method to approximate intractable integrals in probabilistic generative models such as latent Dirichlet allocation. This sanple method has however the crucial drawback of high computational complexity, which make it limited applicable on large data sets. We propose a novel dynamic sampling strategy to significantly improve the efficiency of collapsed Gibbs sampling. The strategy is explore in terms of efficiency, convergence and perplexity. Besides, we present a straight-forward our proposed im rovements with a comparative study on different scale data sets.
Keywords: Gibbs sampling, Optimization, Latent Dirichlet Allocation

\section*{1. Introduction}

Latent Dirichlet allocation (LDA) is a generative probabilistic model that was first proposed by Blei et al. (2003) to discover topics in text documents. LDA is based on the

\section*{Unimodal tasks in NLP}

Adhoc methods for NLP problems
\begin{tabular}{|c|c|c|c|c|}
\hline Sentiment analysis & Text classification & Topic modeling & Text summarization & \begin{tabular}{c} 
Natural language \\
generation
\end{tabular} \\
\hline \begin{tabular}{c} 
Named entity \\
recognition
\end{tabular} & \begin{tabular}{c} 
Word sense \\
disambiguation
\end{tabular} & \begin{tabular}{c} 
Parts-of-speech \\
tagging
\end{tabular} & \begin{tabular}{c} 
Grammatical \\
parsing
\end{tabular} & Machine translation \\
\hline Question answering & Spam filtering & Language modeling & Dialog systems & \begin{tabular}{c} 
Information \\
extraction
\end{tabular} \\
\hline \begin{tabular}{c} 
Semantic role \\
labeling
\end{tabular} & \begin{tabular}{c} 
Part-of-speech \\
induction
\end{tabular} & \begin{tabular}{c} 
Co-reference \\
resolution
\end{tabular} & Pronoun resolution & \begin{tabular}{c} 
Sentence \\
segmentation
\end{tabular} \\
\hline
\end{tabular}

\section*{Textual Modality}

\section*{Unimodal - CV}

\section*{Fashion-MNIST, 2017}


Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
\(\qquad\) Mühlenstraße 25, 10243 Berlin roland.vollgraf@zalando.de

\section*{Abstract}

We present Fashion-MNIST, a new dataset comprising of \(28 \times 28\) grayscale images of 70,000 fashion products from 10 categories, with 7,000 image per category. The training set has 60,000 images and the test set has 10,000 images. Fashion-MNIST is intended to serve as a direct dropin replacement for the original MNIST dataset for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits. The dataset is freely available at https://github.com/zalandoresearch/fashion-mnist.

\section*{Unimodal tasks in CV}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Object classification \\
and detection
\end{tabular} & \begin{tabular}{c} 
Image \\
segmentation
\end{tabular} & Object tracking & Action recognition & \begin{tabular}{c} 
Scene \\
understanding
\end{tabular} \\
\hline 3D reconstruction & Pose estimation & Depth estimation & Stereo vision & \begin{tabular}{c} 
Texture recognition \\
and classification
\end{tabular} \\
\hline Material recognition & \begin{tabular}{c} 
Object recognition \\
in video
\end{tabular} & \begin{tabular}{c} 
Facial recognition \\
and identification
\end{tabular} & \begin{tabular}{c} 
Human activity \\
recognition
\end{tabular} & \begin{tabular}{c} 
Image \\
super-resolution
\end{tabular} \\
\hline Neural style transfer & Image inpainting & \begin{tabular}{c} 
Video frame \\
interpolation
\end{tabular} & \begin{tabular}{c} 
Multiple object \\
tracking in 3D
\end{tabular} & SLAM \\
\hline
\end{tabular}

\section*{Unimodal tasks in speech \& audio}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Automatic Speech \\
Recognition
\end{tabular} & Text-to-Speech & \begin{tabular}{c} 
Speaker \\
Recognition
\end{tabular} & Speaker Diarization & \begin{tabular}{c} 
Speech \\
Enhancement
\end{tabular} \\
\hline \begin{tabular}{c} 
Music \\
Recommendation
\end{tabular} & \begin{tabular}{c} 
Music Genre \\
Recognition
\end{tabular} & \begin{tabular}{c} 
Music Artist \\
Recognition
\end{tabular} & \begin{tabular}{c} 
Music Structure \\
Segmentation
\end{tabular} & \begin{tabular}{c} 
Music Tempo \\
Estimation
\end{tabular} \\
\hline \begin{tabular}{c} 
Audio Source \\
Separation
\end{tabular} & \begin{tabular}{c} 
Sound Event \\
Detection
\end{tabular} & \begin{tabular}{c} 
Sound Event \\
Classification
\end{tabular} & \begin{tabular}{c} 
Sound Event \\
Localization
\end{tabular} & \begin{tabular}{c} 
Audio Scene \\
Recognition
\end{tabular} \\
\hline Audio Captioning & \begin{tabular}{c} 
Emotion \\
Recognition
\end{tabular} & Speech Translation & \begin{tabular}{c} 
Voice Activity \\
Detection
\end{tabular} & Silence Detection \\
\hline
\end{tabular}

\section*{Unimodal know-how are hardly transferable}

- Tasks are specific to just one modality (e.g. textual, visual, acoustic, etc).
- Knowledge is learned from and applied to only one modality (i.e. a visual algorithm can only learn from and be applied to images).
\begin{tabular}{|c|c|c|c|c|}
\hline Senimentenaysis & Tox cosssitation & Topie modesing & Text summoriation & Laturalanguase \\
\hline Named onty & Werd sensen &  & ciormmatiol & Mocrine transation \\
\hline Quesiononosveing & Spam fitering & Longusagmodeing & Diologssitems & \(\substack{\text { momeration } \\ \text { Oxtaction }}\) \\
\hline Semanition & Parcterseat &  & Pronoun & Semeneo \\
\hline \multicolumn{5}{|c|}{Texual modality} \\
\hline  & menene & obicturacking & Action nocostion & Sease \\
\hline reosisuction & Pose esimoction & Depanosimotion & Serovison &  \\
\hline Star reosmiton & nveso & denicate & Mumanemy & Memesime \\
\hline Muwresyveronser & mpgeanjoming & mepoution & Hocemom & sam \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{veselusostiliy} \\
\hline Aucomote Spean & Trent-0. Speesh & Spoceion & Poasera oivection & Speen \\
\hline music & Musicene & mais antis & Mes sincure & Mesiciompo \\
\hline  & Sara semt & Somatyen & Surndemt & Aldicisane \\
\hline Audiocopioning &  & Speach ronssion & Vocenciny & Sincoe \\
\hline \multicolumn{5}{|c|}{Acousite Noadily} \\
\hline
\end{tabular}

\section*{A detour: cross-modal model}

NIPS 2010, Cross-LDA


Figure 2: Probabilistic framework for performing the image composition and sound illustration task. The framework is an extension based on the work flow proposed in [8]. Images and sounds are represented in bags-of-words, so that the difference between the two modalities can be omitted. Once we have the algorithm for inferring sounds from an image, we can apply it to infer images from a sound by mirroring the algorithm.

\section*{Erase the boundary between modalities}

- Tasks are shared and transferred between multiple modalities (so one algorithm can work with images and text and audio).
- Knowledge is learned from and applied to multiple modalities (so an algorithm can learn from textual data and apply that to visual data).

\section*{Paradigm shift from unimodal to multimodal}

The rise of multimodal Al can be attributed to advances in two machine learning techniques: Representation learning and transfer learning.
- Representation learning lets models create common representations for all modalities.
- Transfer learning lets models first learn fundamental knowledge, and then fine-tune on specific domains.

\section*{CLIP, DALLE, BLIP, Bark, GPT4}

We will see more and more Al applications move beyond one data modality and leverage relationships between different modalities


The paradigm shift from single-modal AI to multimodal AI

\section*{"An artificial intelligence system trained on words and sentences alone will never approximate human understanding."}
Y. Lecun in 2022 in Al And The Limits Of Language

\title{
Multimodal Al is the future, but the ML ecosystem is not yet suited for it.
}

\section*{Agenda}
- Preliminary: multimodal AI
- Opensource package: DocArray
- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data
- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ concepts like data classes could be helpful.

\title{
DocArray for representing, transiting, storing, searching multimodal data
}

\section*{Representing multimodal data is a pain}
- Lack of common interface for different modalities makes it difficult to work with multiple modalities at the same time.
- No easy way to represent unstructured and nested multimodal data.

\section*{Lack of common interface}


\section*{No easy way to represent unstructured nested multimodal data}

- Unstructured document
- Nested content
- Different modalities (text, image, ...)

\section*{DocArray way of representing multimodal data}


By the Way A Post Travel Destination
Everything to know about flying with pets, from picking your seat to keeping your animal calm

By Nathan Diller
from docarray import dataclass, Docume \(\square\) from docarray.typing import Image, Text,
```

@dataclass
class WPArticle:
banner: Image
headline: Text
meta: JSON
a = WPArticle(
banner='dog-cat-flight.png',
headline='Everything to know about fl
meta={
'author': 'Nathan Diller',
column': 'By the Way - A Post Tr
},
)
doc = Document(a)

```

\section*{Frequent data transfer over network is expensive}

Multimodal data is processed by multiple models and models are usually deployed in a distributed way.
\begin{tabular}{l} 
Data at rest \\
\hline \multicolumn{1}{|c|}{ Dactive data under very } \\
Inach \\
occasional changes, stored \\
physically in database, \\
warehouse, spreadsheet, \\
archives, etc.
\end{tabular}
Data in use
Active data under constant
change, stored physically in
database, warehouse,
spreadsheet, etc.

\section*{Data in transit}

Traversing a network or temporarily residing in computer memory to be read or updated

\section*{Performant serialization is important}

DocArray is designed to be "ready-to-wire" at anytime.
- JSON string: .from_json()/.to_json()
- Pydantic model: .from_pydantic_model()/.to_pydantic_model()
- Bytes (compressed): .from_bytes()/.to_bytes()
- Disk serialization: .save_binary() / . load_binary()
- Base64 (compressed): .from_base64()/.to_base64()
- Protobuf Message: .from_protobuf()/.to_protobuf()
- Python List: .from_list()/.to_list()
- Pandas Dataframe: .from_dataframe()/.to_dataframe()
- Cloud: .push()/.pull()

\section*{Binary serialization optimized for in-transit \& at-rest}

Size in MB on 1M Docs


\section*{Binary serialization optimized for in-transit \& at-rest}

Time cost in seconds on 1M Docs
\(\square\) Serialization time (s) Deserialization time (s)


\section*{Storing nested data with databases is complicated}
- Complex and nested schema are not directly supported in databases
- Explosion in numbers of vector databases with different APIs but no universal client

\section*{DocArray way of storing data}
```

-००
DocArray Storage
1 from docarray import DocumentArray, Document
2
3 da = DocumentArray(storage='milvus',
4 \mp@code { c o n f i g = \{ ' c o n n e c t i o n ' : ~ ' e x a m p l e . d b ' \}) }
5
6 with da:
7 da.append(Document())
8 da.summary()

```

\section*{DocArray way of storing data}


\section*{Vector Search via a consistent API}
```

from docarray
numpy
np
n_dim =
5 da = DocumentArray(
storage='annlite'
config={'n_dim': n_dim, 'metric': 'Euclidean'},
da:
da.extend([Document(embedding=i * np.ones(n_dim)) for i in range(10)])
1 2
1 3 result = da.find(np.array([2, 2, 2]), limit=6)
14 result[:, 'embedding']

```

\section*{Vector Search via a consistent API}

\begin{tabular}{|c|c|c|c|c|}
\hline Name & Construction & Vector search & Vector search Filter & Filteı \\
\hline In memory & DocumentArray () & V & \(\nabla\) & \(\nabla\) \\
\hline SQLite & DocumentArray(storage='sqlite') & X & \(x\) & \(\nabla\) \\
\hline Weaviate & DocumentArray(storage='weaviate') & V & v & V \\
\hline Qdrant & DocumentArray(storage='qdrant') & V & \(\nabla\) & \(\nabla\) \\
\hline AnnLite & DocumentArray (storage='annlite \({ }^{\text {' }}\) ) & \(\nabla\) & \(\nabla\) & \(\nabla\) \\
\hline ElasticSearch & DocumentArray(storage='elasticsearch') & V & \(\nabla\) & \(\nabla\) \\
\hline Redis & DocumentArray(storage='redis') & \(\nabla\) & \(\nabla\) & \(\nabla\) \\
\hline Milvus & DocumentArray(storage='milvus') & \(v\) & \(v\) & \(\nabla\) \\
\hline
\end{tabular}

\section*{Quick Recap}
- It's like JSON, but for intensive computation.
- It's like numpy.ndarray, but for unstructured data.
- It's like pandas.DataFrame, but for nested and mixed media data with embeddings.
- It's like Protobuf, but for data scientists and deep learning engineers.

\section*{رine}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ick R} & Tensor/matrix data & \(\square\) & \(\nabla\) & \(\times\) & \(\nabla\) & \(\checkmark\) & \multirow[b]{4}{*}{ings.} \\
\hline & Text data & จ & \(\times\) & จ & จ & จ & \\
\hline \multirow[t]{10}{*}{It's like JSOI It's like nur It's like pan It's like Prot} & Media data & \(\square\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \\
\hline & Nested data & \(\bullet\) & \(\times\) & \(\bullet\) & \(\times\) & \(\square\) & \\
\hline & Mixed data of the above four & - & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \\
\hline & Easy to (de) serialize & \(\nabla\) & \(\times\) & จ & ® & ® & \\
\hline & Data validation (of the output) & \(\square\) & \(\times\) & \(\times\) & \(\times\) & ® & \\
\hline & Pythonic experience & จ & จ & \(\times\) & \(\checkmark\) & \(\times\) & \\
\hline & 10 support for filetypes & \(\square\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \\
\hline & Deep learning framework support & \(\square\) & จ & \(\times\) & \(\times\) & \(\times\) & \\
\hline & multi-core/GPU support & ■ & \(\checkmark\) & \(\times\) & \(\times\) & \(\times\) & \\
\hline & Rich functions for data types & \(\square\) & \(\times\) & \(\times\) & จ & \(\times\) & \\
\hline
\end{tabular}

\section*{Hands-on DocArray}

\section*{Install DocArray}

To install DocArray (0.33), you can use the following command: pip install "docarray[full]"

\section*{https://docs.docarray.org/}

For old DocArray, more compatibility and features
pip install "docarray[full]" \(==0.21\)

\section*{Representing data - Document}

At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a BannerDoc class that can be used to represent the data of a website banner:
```

from docarray import BaseDoc
from docarray.typing import ImageUrl
class BannerDoc(BaseDoc):
image_url: ImageUrl
title: str
description: str

```

\section*{Representing data - Document}

You can then instantiate a BannerDoc object and access its attributes:
```

banner = BannerDoc(
image_url='https://example.com/image.png',
title='Hello World',
description='This is a banner',
)
assert banner.image_url == 'https://example.com/image.png'
assert banner.title == 'Hello World'
assert banner.description == 'This is a banner'

```

\section*{Representing multimodal data with nested structure}

Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube videos.

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's keep it simple).

All of these elements are from different modalities:
the title and description are text,
the thumbnail is an image,
and the video itself is, well, a video.
DocArray lets you represent all of this multimodal data in a single object.


Year in Review: 2021 in Graphic Design
Linus Boman ©
119K views - 1 year ago

\section*{Representing multimodal data with nested structure}

First for the thumbnail image:
```

from docarray import BaseDoc
from docarray.typing import ImageUrl, ImageBytes
class ImageDoc(BaseDoc):
url: ImageUrl
bytes: ImageBytes = (
None \# bytes are not always loaded in memory, so we make it optional
)

```

\section*{Representing multimodal data with nested structure}

Then for the video itself:
```

from docarray import BaseDoc
from docarray.typing import VideoUrl, VideoBytes
class VideoDoc(BaseDoc):
url: VideoUrl
bytes: VideoBytes = (
None \# bytes are not always loaded in memory, so we make it optional
)

```

\section*{Representing multimodal data with nested structure}

All the elements that compose a YouTube video are ready:
```

from docarray import BaseDoc
class YouTubeVideoDoc(BaseDoc):
title: str
description: str
thumbnail: ImageDoc
video: VideoDoc

```

\section*{Representing multimodal data with nested structure}

All the elements that compose a YouTube video are ready:
You see here that ImageDoc and VideoDoc are also BaseDoc, and they are later used inside another BaseDoc`. This is what we call nested data representation.

BaseDoc can be nested to represent any kind of data
class YouTubeVideoDoc(BaseDoc):
    title: str
    description: str
    thumbnail: ImageDoc
    video: VideoDoc

\section*{Representing multimodal data with nested structure}

All the elements that compose a YouTube video are ready:
You see here that ImageDoc and VideoDoc are also BaseDoc, and they are later used inside another BaseDoc`. This is what we call nested data representation.

BaseDoc can be nested to represent any kind of data hierarchy.

This representation can be used to send or store data. You can even use it directly to train a machine learning Pytorch model on this representation.

\section*{Recap: representing multimodal data}
- "Dataclass" look and feel, for defining the structure
- Strong typing, for defining modality
- Python built-in types
- Numpy types
- URI types
- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D
- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding
- Optional[]

\section*{Representing an array of multimodal data}

The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single datapoint.

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce
- DocList which is a Python list of BaseDocs
- DocVec which is a column-based representation of BaseDocs

\section*{Example of DocList}

First you need to create a Doc class, our data schema. Let's say you want to represent a banner with an image, a title and a description:
```

from docarray import BaseDoc, DocList
from docarray.typing import ImageUrl
class BannerDoc(BaseDoc):
image: ImageUrl
title: str
description: str

```

\section*{Example of DocList}

First you need to create a Doc class, our data schema. Let's say you want to represent a banner with an image, a title and a description:
```

from docarray import BaseDoc, DocList
from docarray.typing import ImageUrl

```
Let's instantiate several BannerDoc s:
    banner1 = BannerDoc(
        image='https://example.com/image1.png',
        title='Hello World'
        description='This is a banner',
    )
    banner2 = BannerDoc(
        image='https://example.com/image2.png',
        title='Bye Bye World',
        description='This is (distopic) banner',
    )

\section*{Example of DocList}

DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.

You can now collect them into a DocList of BannerDoc s:
```

docs = DocList[BannerDoc]([banner1, banner2])

```
docs.summary()


Document Schema

BannerDoc
- image: ImageUrl
title: str
- description: str

\section*{Example of DocList}

You can access documents inside it with the usual Python array API:
```

print(docs[0])
BannerDoc(image='https://example.com/image1.png', title='Hello World', description:

```
or iterate over it:
```

for doc in docs:
print(doc)

```
BannerDoc(image='https://example.com/image1.png', title='Hello World', description:
BannerDoc(image='https://example.com/image2.png', title='Bye Bye World', descripti،

\section*{Accessing member attribute at array level}

At the document level:
print(banner1.image)
https://example.com/image1.png'
At the Array level:
print(docs.image)
['https://example.com/image1.png', 'https://example.com/image2.png']

\section*{Accessing member attribute at array level}
```

At the document level:
print(banner1.image)
https://example.com/image1.png'
At the Array level:
print(docs.image)
['https://example.com/image1.png',
['https://example.com/image1.png', 'https://example.com/image2.png']

You can even access the attributes of the nested BaseDoc at the Array level:

```
print(docs.banner.image)
```

```
print(docs.banner.image)
```

This is just the same way that you would do it with BaseDoc:

```
print(page1.banner.image)
```

```
```

print(page1.banner.image)

```
```

'https://example.com/image1.png'

DocList[DocType] syntax

DocList [DocType] creates a custom DocList that can only contain DocType Documents.

Non-typing DocList for heterogeneous data
from docarray import BaseDoc, DocList
from docarray.typing import ImageUrl, AudioUrl
class ImageDoc(BaseDoc)
url: ImageUrl
class AudioDoc(BaseDoc)
url: AudioUrl

docs = DocList(

[
ImageDoc (url='https://example.com/image1.png'), AudioDoc (url='https://example.com/audio1.mp3'),
]

Strong-typing DocList for homogeneous data
docs $=$ DocList $[$ ImageDoc $]$ (

ImageDoc(url='https://example.com/image1.png'), AudioDoc(url='https://example.com/audio1.mp3'),]
)
except ValueError as e
print(e)

ValueError: AudioDoc(

id='e286b10f58533f48a0928460f0206441
url=AudioUrl('https://example.com/audio1.mp3', host_type='domain')
) is not a <class '__main__.ImageDoc'>

.Jine

DocList vs DocVec

DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually owned by each BaseDoc collect just different Document references.

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that every attribute of the BaseDoc will be stored in a contiguous array: a column.

DocList vs DocVec

Let's say you want to embed a batch of Images:
def embed(image: NdArray['batch_size', 3, 224, 224]):

DocList vs DocVec

```
from docarray import BaseDoc
from docarray.typing import NdArray
class ImageDoc(BaseDoc):
    image: NdArray[
        3, 224, 224
    ] = None # [3, 224, 224] this just mean we know in advance the shape of the ts
```


DocList vs DocVec

```
from docarray import BaseDoc
from docarray.typing import NdArray
```

```
from docarray import DocList
import numpy as np
docs = DocList[ImageDoc](
    [ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
embed (np.stack(docs.image))
embed (np.stack(docs.image))
```


.jine

DocList vs DocVec

```
from docarray import BaseDoc
from docarray.typing import NdArray
```

class ImageDoc(BaseDoc):
image:
3, 1 from docarray import DocVec
] = Nc 2 import numpy as np
3
4 docs = DocVec[ImageDoc](
5 [ImageDoc(image=np.random.rand(3, 224, 224)) for _in range(10)]
6)
7
8 embed(docs.image)

Access the view of Document in DocVec

If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to access the data.

```
from docarray import DocVec
docs = DocVec[ImageDoc](
    [ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
my_doc = docs[0]
assert my_doc.is_view() # True
whereas with DocList:
docs = DocList[ImageDoc](
    [ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
my_doc = docs[0]

\section*{Access the view of Document in DocVec}

If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to access the data.

\section*{you should use DocVec when you need to work with contiguous data, and you should use DocList when you need to rearrange or extend your data.}
```

docs = DocList[ImageDoc](
[ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
my_doc = docs[0]

Storing \& retrieving via Vector Database

```
1 from docarray import DocList, BaseDoc
2 \text { from docarray.index import HnswDocumentIndex}
3 import numpy as np
4
5 from docarray.typing import ImageUrl, ImageTensor, NdArray
6
8 class ImageDoc(BaseDoc):
url: ImageUrl
        tensor: ImageTensor
        embedding: NdArray[128]
# create some data
dl = DocList[ImageDoc](
    [
            ImageDoc(
                url="https://upload.wikimedia.org/wikipedia/commons/2/2f/Alpamayo.jpg",
                    tensor=np.zeros((3, 224, 224)),
                    embedding=np.random.random((128, )),
            )
            for _ in range(100)
        ]
24 )
26 # create a Document Index
27 index = HnswDocumentIndex[ImageDoc](work_dir='/tmp/test_index2')
28
30 # index your data
31 index.index(dl)
33 # find similar Documents
34 query = dl[0]
3 5 \text { results, scores = index.find(query, limit=10, search_field='embedding')}
```


Storing \& retrieving via Vector Database

Document Index: ORM for vector DBs

Document Index provides a unified interface to a number of vector databases.
You can think of Document Index as an ORM for vector databases.
Currently, DocArray supports the following vector databases:

- Weaviate | Docs
- Qdrant|Docs
- Elasticsearch v7 and v8| Docs
- HNSWlib|Docs
*Old DocArray v0.21 supports Milvus, Redis, Opensearch

Construct a HNSWDocumentIndex

To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

To create a Document Index, you first need a document that defines the schema of your index:

```
from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray
class MyDoc(BaseDoc):
    embedding: NdArray[128]
    text: str
db = HnswDocumentIndex[MyDoc](work_dir='./my_test_db')
```


Construct a HNSWDocumentIndex

To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"
In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th schema of the form of MyDoc. The Document Index then creates a column for each field in MyDoc.
from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray
class MyDoc(BaseDoc):
embedding: NdArray[128]
text: str
$\mathrm{db}=$ HnswDocumentIndex[MyDoc](work_dir='./my_tes

Construct a HNSWDocumentIndex

To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"
In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th schema of the form of MyDoc. The Document Index then creates a column for each field in MyDoc.

```
from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray
```

The column types in the backend database are determined by the type hints of the document's fields. Optionally, you can customize the database types for every field.

```
db = HnswDocumentIndex[MyDoc](work_dir='./my_tes
```


- 0 -

Construct a HNSWDocumentIndex

To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

To create a Document Index, you first need a document th

```
from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray
```

class MyDoc(BaseDoc):
embedding: NdArray[128]
text: str
$\mathrm{db}=$ HnswDocumentIndex[MyDoc](work_dir='./my_tes

In this code snippet, HnswDocumentIndex takes a schema of the form of MyDoc. The Document Index then creates a column for each field in MyDoc.

The column types in the backend database are determined by the type hints of the document's fields. Optionally, you can customize the database types for every field.

Most vector databases need to know the dimensionality of the vectors that will be stored. Here, that is automatically inferred from the type hint of the embedding field: NdArray [128] means that the database will store vectors with 128 dimensions.

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

```
import numpy as np
from docarray import DocList
# create some random data
docs = DocList[MyDoc](
    [MyDoc(embedding=np.random.rand(128), text=f'text {i}') for i in range(100)]
)
# index the data
db.index(docs)
```


dine

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

```
import numpy as np
from docarray import DocList
# create some random data
docs = DocList[MyDoc](
    [MyDoc(embedding=np.random.rand(128), text=f'text {i}
)
# index the data
db.index(docs)
```

from docarray import BaseDoc
from docarray.index lmport HnswDocum
from docarray.typing import Nähray

As you can see, DocList[MyDoc] and HnswDocumentIndex[MyDoc] are both parameterized with MyDoc. This means that they share the same schema, and in general, the schema of a Document Index and the data that you want to store need to have compatible schemas

```
db = HnswDocumentIndex[MyDoc](work_dir='./my_test_db')
```


Vector search

```
# create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')
# find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{scores=}')
```


Vector search

Search by Document Search by raw vector
\# create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')
\# find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'\{matches=\}')
print(f'\{matches.text=\}')
print(f'\{scores=\}')

Search by Document Search by raw vector

```
# create a query vector
query = np.random.rand(128)
# find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{scores=}')
```


Vector search

Search by raw vector

```
```


create a query Document

```
```


create a query Document

query = MyDoc(embedding=np.random.rand(128), text='query')
query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents

find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5)
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{matches.text=}')
print(f'{scores=}')

```
```

print(f'{scores=}')

```
```

```
Search by raw vectors
\# create some query Documents
queries \(=\) DocList[MyDoc](
MyDoc (embedding=np. random. rand(128), text=f'query \(\left.\{i\}^{\prime}\right)\) for in range(3)
\# find similar Documents
matches, scores = db.find_batched(queries, search_field='embedding', limit=5)
print(f'\{matches=\}')
print(f'\{matches[0].text=\}'
print(f'\{scores=\}')
```

Search by Document Search by raw vector

```
# create a query vector
query = np.random.rand(128)
# find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{scores=}')
```


.jine

Vector search

Search by Document
Search by raw vector

```
# create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')
# find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{scores=}')
```

Search by Documents Search by raw vectors
\# create some query Documents
queries = DocList[MyDoc](
MyDoc (embedding=np. random. rand(128), text=f'query \{i\}') for in range(3)
)
\# find similar Documents
matches, scores = db.find_batched(queries, search_field='embedding', limit=5
print(f'\{matches=\}')
print(f'\{matches[0].text=\}')
print(f'\{scores=\}')

Search by Documen Search by raw vector

```
```


create a query vector

```
```


create a query vector

query = np.random.rand(128)
query = np.random.rand(128)

find similar Documents

find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5)
matches, scores = db.find(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches=}')
print(f'{matches.text=}')
print(f'{matches.text=}')
print(f'{scores=}')
print(f'{scores=}')
Search by Documents Search by raw vectors
Search by Documents Search by raw vectors

create some query vectors

create some query vectors

query = np.random.rand(3, 128)
query = np.random.rand(3, 128)

find similar Documents

find similar Documents

matches, scores = db.find_batched(query, search_field='embedding', limit=5)
matches, scores = db.find_batched(query, search_field='embedding', limit=5)
print(f'{matches=}')
print(f'{matches=}')
print(f'{matches[0].text=}')
print(f'{matches[0].text=}')
print(f'{scores=}')

```
```

print(f'{scores=}')

```
```


Hybrid search through the query builder

Document Index supports atomic operations for vector similarity search, text search and filter search.
To combine these operations into a single, hybrid search query, you can use the query builder that is accessible through build_query():

```
# prepare a query
q_doc = MyDoc(embedding=np.random.rand(128), text='query')
query = (
    db.build_query() # get empty query object
    .find(query=q_doc, search_field='embedding') # add vector similarity search
    filter(filter_query={'text': {'$exists': True}}) # add filter search
    .build() # build the query
)
# execute the combined query and return the results
results = db.execute_query(query)
print(f'{results=}')
```


Customize vector DB configuration

```
db = HnswDocumentIndex[MyDoc](work_dir='/tmp/my_db')
db.configure(
    default_column_config={
        np.ndarray: {
            'dim': -1,
            'index': True,
            space': 'ip',
            max_elements': 2048,
            ef_construction': 100,
            'ef': 15,
            'M': 8,
            'allow_replace_deleted': True,
            num_threads': 5,
        },
        None: {},
    }
)
```

```
```

from docarray.typing import ImageUrl, VideoUrl, AnyTensor

```
```

```
from docarray.typing import ImageUrl, VideoUrl, AnyTensor
```

```
1 fr
```

1 fr

define a nested schema

define a nested schema

class ImageDoc(BaseDoc):
class ImageDoc(BaseDoc):
url: ImageUrl
url: ImageUrl
tensor: AnyTensor = Field(space='cosine', dim=64)
tensor: AnyTensor = Field(space='cosine', dim=64)
Class VideoDoc(BaseDoc)
Class VideoDoc(BaseDoc)
url: VideoUrl
url: VideoUrl
tensor: AnyTensor = Field(space='cosine', dim=128)
tensor: AnyTensor = Field(space='cosine', dim=128)
class YouTubeVideoDoc(BaseDoc):
class YouTubeVideoDoc(BaseDoc):
title: str
title: str
description: str
description: str
thumbnail: ImageDoc
thumbnail: ImageDoc
video: VideoDoc
video: VideoDoc
tensor: AnyTensor = Field(space='cosine', dim=256)
tensor: AnyTensor = Field(space='cosine', dim=256)

create a Document Index

create a Document Index

doc_index = HnswDocumentIndex[YouTubeVideoDoc](work_dir='/tmp2')
doc_index = HnswDocumentIndex[YouTubeVideoDoc](work_dir='/tmp2')

create some data

create some data

index_docs = [
index_docs = [
YouTubeVideoDoc(
YouTubeVideoDoc(
title=f'video {i+1}',
title=f'video {i+1}',
description=f'this is video from author {10*i}',
description=f'this is video from author {10*i}',
thumbnail=ImageDoc(url=f'http://example.ai/images/{i}', tensor=np.ones(64)),
thumbnail=ImageDoc(url=f'http://example.ai/images/{i}', tensor=np.ones(64)),
video=VideoDoc(url=f'http://example.ai/videos/{i}', tensor=np.ones(128)),
video=VideoDoc(url=f'http://example.ai/videos/{i}', tensor=np.ones(128)),
tensor=np.ones(256),
tensor=np.ones(256),
)
)
for i in range(8)
for i in range(8)
]]
]]
37
37
38 \# index the Documents
38 \# index the Documents
3 9 doc_index.index(index_docs)

```
3 9 \text { doc_index.index(index_docs)}
```


Indexing and

 searching multimodal dataIn the following example you can see a complex schema that contains nested Documents. The YouTubeVideoDoc contains a VideoDoc and an ImageDoc, alongside some "basic" fields:

Year in Review: 2021 in Graphic Design
Linus Boman 0
119 K views $\cdot 1$ year ago

Indexing and searching multimodal data

You can perform search on any nesting level by using the dunder operator to specify the field defined in the nested data.

```
# create a query Document
query_doc = YouTubeVideoDoc(
    title=f'video query',
    description=f'this is a query video',
    thumbnail=ImageDoc(url=f'http://example.ai/images/1024', tensor=np.ones(64)),
    video=VideoDoc(url=f'http://example.ai/videos/1024', tensor=np.ones(128)),
    tensor=np.ones(256),
)
# find by the `youtubevideo` tensor; root level
docs, scores = doc_index.find(query_doc, search_field='tensor', limit=3)
# find by the `thumbnail` tensor; nested level
docs, scores = doc_index.find(query_doc, search_field='thumbnail__tensor', limit=3)
# find by the `video` tensor; neseted level
docs, scores = doc_index.find(query_doc, search_field='video__tensor', limit=3)
```

9
18

Nested DocList with subindex

Documents can be nested by containing a DocList of other documents, which is a slightly more complicated scenario than the previous one.

In this case, the nested DocList will be represented as a new sub-index (or table, collection, etc., depending on the database backend), that is linked with the parent index (table, collection, ...).

```
class ImageDoc(BaseDoc):
    ul: Imageur
    tensor_image: AnyTensor = Field(space='cosine', dim=64)
class VideoDoc(BaseDoc):
    url: VideoUrl
    images: DocList[ImageDoc]
    tensor_video: AnyTensor = Field(space='cosine', dim=128)
class MyDoc(BaseDoc):
    docs: DocList[VideoDoc]
    tensor: AnyTensor = Field(space='cosine', dim=256)
# create a Document Index
doc_index = HnswDocumentIndex[MyDoc](work_dir='/tmp3')
1 9
# create some data
index_docs = [
    MyDoc(
        docs=DocList[VideoDoc](
            VideoDoc(
                    url=f'http://example.ai/videos/{i}-{j}'
                    images=DocList[ImageDoc](
                    [
                                ImageDoc(
                            url=f'http://example.ai/images/{i}-{j}-{k}',
                            tensor_image=np.ones(64),
                                    for
                                    for k in range(10)
                    ]
                    ),
                    tensor video=np.ones(128),
            )
            for j in range(10)
            ]
            ),
            tensor=np.ones(256),
    )
    r i in range(10)
44 ]
# index the Documents
47 doc_index.index(index_docs)

\section*{Search by subindex}
```

1 \# find by the `VideoDoc` tensor
2 root_docs, sub_docs, scores = doc_index.find_subindex(
3 np.ones(128), subindex='docs', search_field='tensor_video', limit=3
4)
5
6 ~ \# ~ f i n d ~ b y ~ t h e ~ `I m a g e D o c` ~ t e n s o r ~
7 root_docs, sub_docs, scores = doc_index.find_subindex(
8 np.ones(64), subindex='docs__images', search_field='tensor_image', limit=3
9)

```

\section*{Transiting data over network}

Sending via REST API/JSON -> Backend: FastAPI
```

import numpy as np
from fastapi import FastAPI
3 from docarray.base_doc import DocArrayResponse
4 from docarray import BaseDoc
5 from docarray.documents import ImageDoc
6 from docarray.typing import NdArray
8 class InputDoc(BaseDoc):
img: ImageDoc
text: str
class OutputDoc(BaseDoc):
embedding_clip: NdArray
embedding_bert: NdArray
pp = FastAPI()
21 @app.post("/embed/", response_model=0utputDoc, response_class=DocArrayResponse)
2 2 async def create_item(doc: InputDoc) -> OutputDoc:
\#\# call my fancy model to generate the embeddings
doc = OutputDoc(
embedding_clip=embed(doc.image)), embedding_bert=embed(doc.text))
)
return doc

```

Sending via gRPC/ws -> Backend: Jina microservice

\section*{Transiting data over network}

\author{
Sending via REST API/JSON -> Backend: FastAPI
}
```

1 import numpy as np
from fastapi import FastAPI
3 from docarray.base_doc import DocArrayResponse
4 from docarray import BaseDoc
5 from docarray.documents import ImageDoc
6 from docarray.typing import NdArray
7
8 class InputDoc(BaseDoc):
img: ImageDoc
text: str
class OutputDoc(BaseDoc):
embedding_clip: NdArray
embedding_bert: NdArray
app = FastAPI()

```
```

1 async with AsyncClient(app=app, base_url="http://test") as ac:

```
1 async with AsyncClient(app=app, base_url="http://test") as ac:
2 response = await ac.post("/doc/", data=docs.to_json()) # sending docs as json
2 response = await ac.post("/doc/", data=docs.to_json()) # sending docs as json
3
3
4 assert response.status_code == 200
4 assert response.status_code == 200
# You can read FastAPI's response in the following way
# You can read FastAPI's response in the following way
6 docs = DocList[TextDoc].from_json(response.content.decode())
```

6 docs = DocList[TextDoc].from_json(response.content.decode())

```

\section*{Transiting data over network}

\author{
Sending via gRPC/ws -> Backend: Jina microservice
}
```

class WhisperExecutor(Executor):
def __init__(self, device: str, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = whisper.load_model("medium.en", device=device)
@requests
def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:
response_docs = DocList[Response]()
for doc in docs:
transcribed_text = self.model.transcribe(str(doc.audio))['text']
response_docs.append(Response(text=transcribed_text))
return response_doc

```

\section*{Transiting data over network}

\author{
Sending via gRPC/ws -> Backend: Jina microservice
}
```

class WhisperExecutor(Executor):
def __init__(self, device: str, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = whisper.load_model("medium.en", device=device)
@requests
def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:
response_docs = DocList[Respo
for doc in docs:
transcribed_text = self.m
response_docs.append(Resp
return response_doc
1 dep = Deployment(
2 uses=WhisperExecutor, uses_with={'device': "cpu"}, port=12349,
timeout_ready=-1
3)
4
with dep:
docs = d.post(
on='/transcribe',
inputs=[AudioURL(audio='resources/audio.mp3')],
return_type=DocList[Response],
)
print(docs[0].text)
13

```

\section*{Agenda}
- Preliminary: multimodal AI
- Opensource package: DocArray
- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

\section*{- Multimodal at scale in production}

This tutorial may require technical knowledge. Familiarity with Python 3.7+ concepts like data classes could be helpful.

An end to end example
https://docs.docarray.org/how to/multimodal training_and serving/

\section*{هنْ}

\section*{Thanks for your attention}
\# jina.ai
@ @JinaAl_
D han.xiao@jina.ai```


[^0]:    [Aumüller+, ESA 2019]

[^1]:    1-million experiments. Due to scalability issues, we could not report results on the 25 GB experiments for HCNNG (indexing time exceeded 24 hours) and KGRAPH/DPG (could not reach an acceptable accuracy, i.e., recall $>0.8$ ). Due to the low performance on the 25 GB experiments of VAMANA and EFANNA (indexing a 25 GB dataset required over 300 GB RAM and indexing a 100 GB dataset needed more than the 1.4 TB of available memory) and NSG (since it uses EFANNA as a base graph), we excluded them from experiments with larger datasets.
    Indexing Time. Figure 1 shows hat onthe 2 GB dataset, ELPIS can build its index 2 x and 5 x faster band ind nd NSG, respectively, and over an order of magnitude ast har the other competitors. On the other dataset sizes, ELPIS sonter than its second best competitor, HNSW. Since NSG [50] is built on top of EFANNA [48], we include the time to build both indexing structures. Although VAMANA [111] builds the graph based on a random initial graph, it snends more than 7 hours to sreate the Deen25GR index This is

