

Efficient and Intelligent Computing Lab

Hint-Aug: Drawing Hints From Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning

Zhongzhi Yu, Shang Wu, Yonggan Fu, Shunyao Zhang, and Yingyan (Celine) Lin

Georgia Institute of Technology

Paper Tag: WED-AM-273

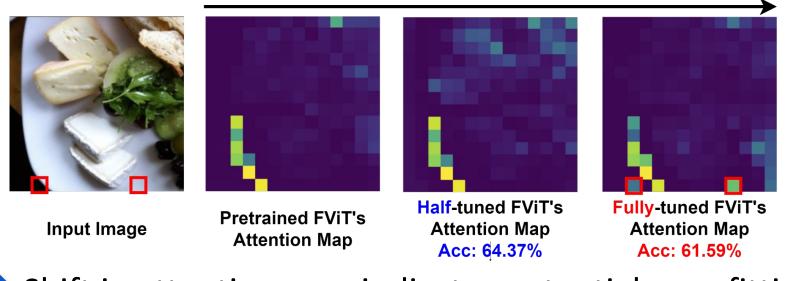
Challenge: Scarcity of Data

- Despite PET's great promise, collecting sufficient downstream data is arduous
- Few-shot tuning: A common scenario
 - Tuning with limited samples per class
 - Largely impacts PET performance
 - 1-shot 70.2% vs. 1000-shot 90.4% @Pet dataset [Zhang, arXiv'22]

How to make better use of few-shot tuning data?

- An effective augmentation pipeline
 - Where to augment?
 - How to augment?

 During PET, FViT's attention shifts to irrelevant positions (red boxes)



Tuning Process

Shift in attention map indicates potential over-fitting

Leverage the pretrained FViT to guide the augmentation of few-shot PET

Hint-Aug: Key Enablers

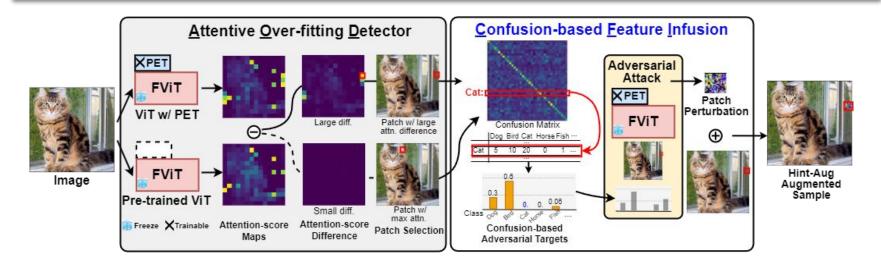
 Core Idea: Leverage the pretrained FViT's learned generalizable features to guide augmentation

Q1: Where to augment? A1: Attentive Over-fitting Detector

Augment the patch that the FViT is over-fitted to

Q2: How to augment? A2: Confusion-based Feature Infusion

Infuse easy-to-confuse features from FViT



Efficient and Intelligent Computing Lab

Hint-Aug: Drawing Hints From Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning

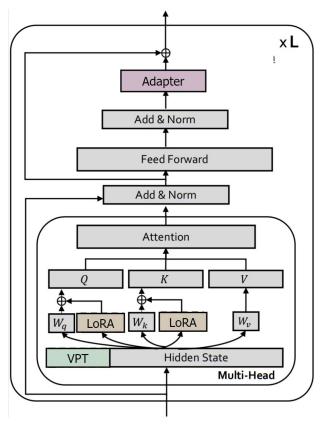
Zhongzhi Yu, Shang Wu, Yonggan Fu, Shunyao Zhang, and Yingyan (Celine) Lin

Georgia Institute of Technology

Paper Tag: WED-AM-273

Background: Parameter-efficient Tuning (PET)

 Foundation vision transformers (FViTs) learns features w/ strong adaptation ability

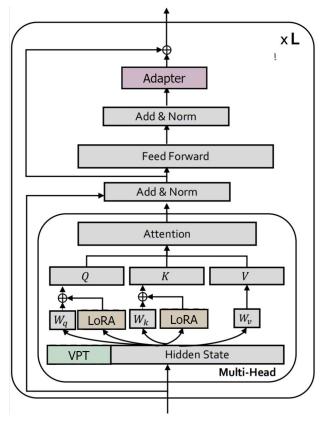


[Zhang, arXiv'22]

Background: Parameter-efficient Tuning (PET)

 Foundation vision transformers (FViTs) learns features w/ strong adaptation ability

• This motivates **PET**: tune FViTs with **limited trainable params**



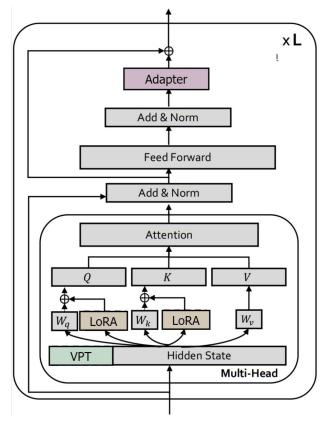
[Zhang, arXiv'22]

Background: Parameter-efficient Tuning (PET)

 Foundation vision transformers (FViTs) learns features w/ strong adaptation ability

• This motivates **PET**: tune FViTs with **limited trainable params**

- Compared with full tuning
 - Reduced storage cost
 - Promising accuracy



[Zhang, arXiv'22]

Challenge: Scarcity of Data

 Despite PET's great promise, collecting sufficient downstream data is arduous

Challenge: Scarcity of Data

 Despite PET's great promise, collecting sufficient downstream data is arduous

- Few-shot tuning: A common scenario
 - Tuning with limited samples per class
 - Largely impacts PET performance
 - 1-shot 70.2% vs. 1000-shot 90.4% @Pet dataset [Zhang, arXiv'22]

Our Goal: Improve Data Efficiency

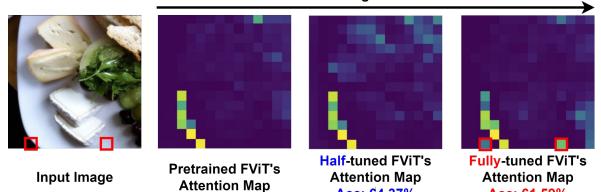
How to make better use of few-shot tuning data?

• An effective augmentation pipeline

Where to augment?

How to augment?

• During PET, FViT's attention shifts

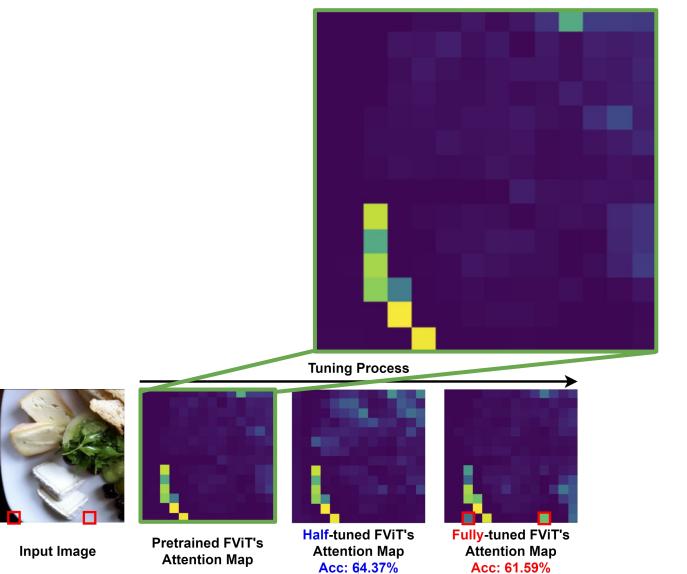


Tuning Process

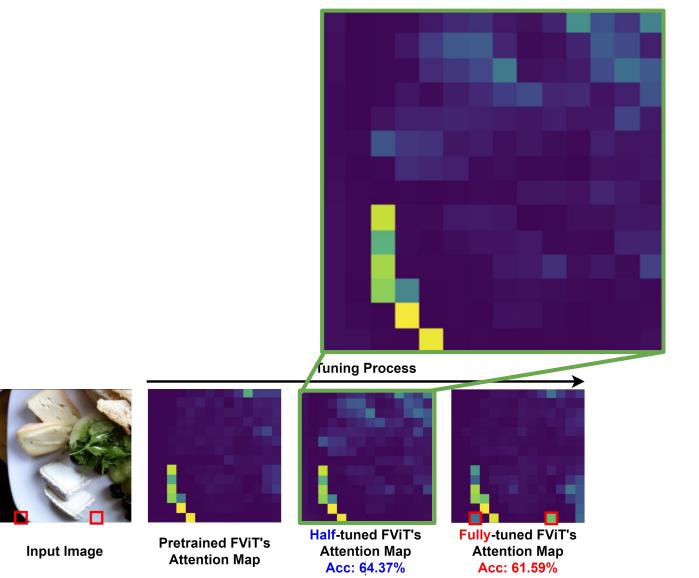
Acc: 64.37%

Acc: 61.59%

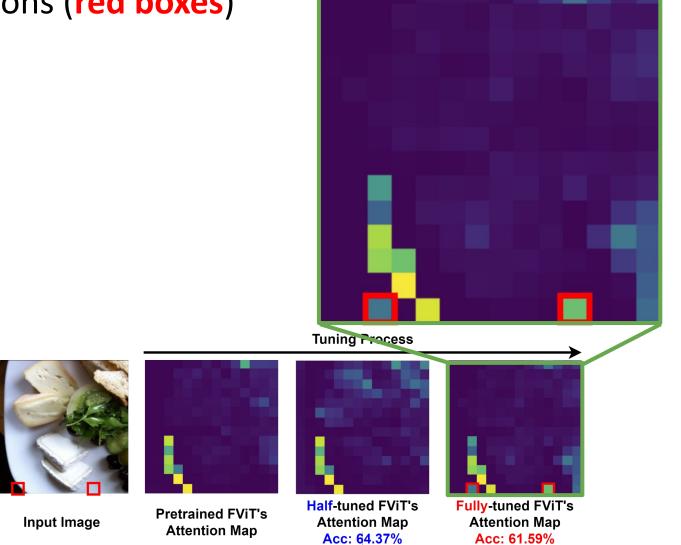
• During PET, FViT's attention shifts



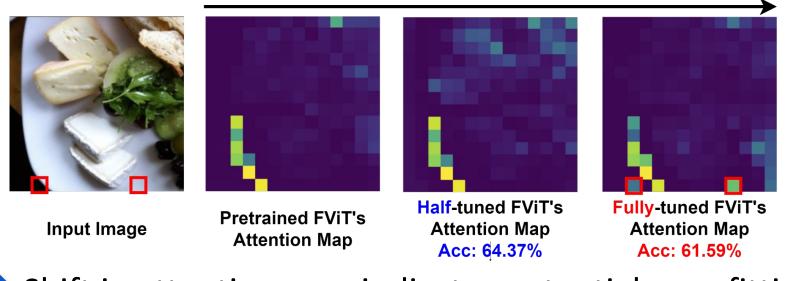
• During PET, FViT's attention shifts



 During PET, FViT's attention shifts to irrelevant positions (red boxes)



 During PET, FViT's attention shifts to irrelevant positions (red boxes)



Tuning Process

Shift in attention map indicates potential over-fitting

Leverage the pretrained FViT to guide the augmentation of few-shot PET

Our Contributions

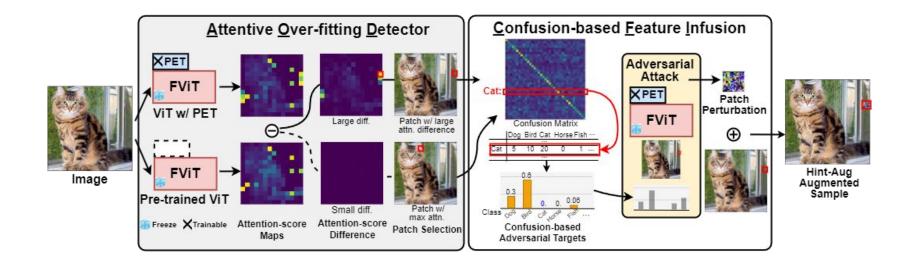
 Propose Hint-based Data Augmentation (Hint-Aug) to guide data augmentation in few-shot PET

- Integrate two key enablers:
 - Attentive Over-fitting Detector: identify the over-fitting samples with attention maps
 - Confusion-based Feature Infusion: infuse pretrained
 FViTs' learned features to data

 SOTA accuracy-data efficiency trade-off: e.g., a 2.22% higher accuracy with 50% less data on Pet dataset

Hint-Aug: Core Idea

- Leverage the pretrained FViT's learned generalizable
 - **features** to guide augmentation



Hint-Aug: Key Enablers

Q1: Where to augment? A1: Attentive Over-fitting Detector

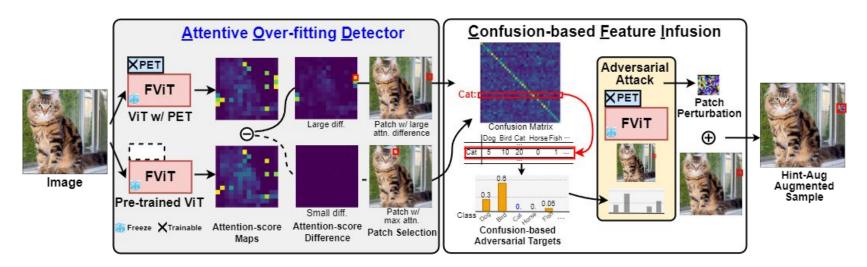
Detect and augment the patch that FViT is over-fitted to

- Attention map diff. between pretrained and tuned FViT
 - Avg. diff > threshold: Suspicious to over-fitting

Select largest diff. patch

Avg. diff <= threshold: No significant over-fitting

Select highest attention patch

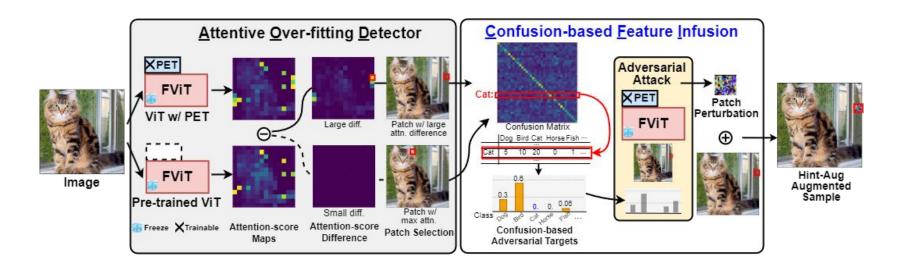


Hint-Aug: Key Enablers

Q1: Where to augment? A1: Attentive Over-fitting Detector

Q2: How to augment? A2: Confusion-based Feature Infusion

- Calculate confusion-based adversarial targets C based on prob. of wrongly classified to each class
- Infuse features to selected patch w/ adv. attack with target ${\cal C}$

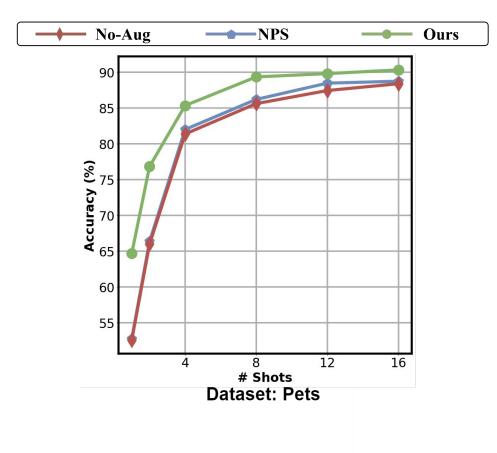


Hint-Aug: Evaluation Settings

- Three PET methods:
 - Adapter [Houlsby, ICML'19], LORA [Hu, arXiv'21], VPT [Jia, ECCV'22]
- **Five** few-shot datasets:
 - Food, Pet, Flowers, Aircraft, Cars
- **Eight** few-shot settings: 1/2/4/8/12/16-shot
- FViT: ImageNet pretrained ViT-Base [Dosovitskiy, ICML'20]
- Two SOTA baselines: No augment; NPS [Zhang, arXiv'22]

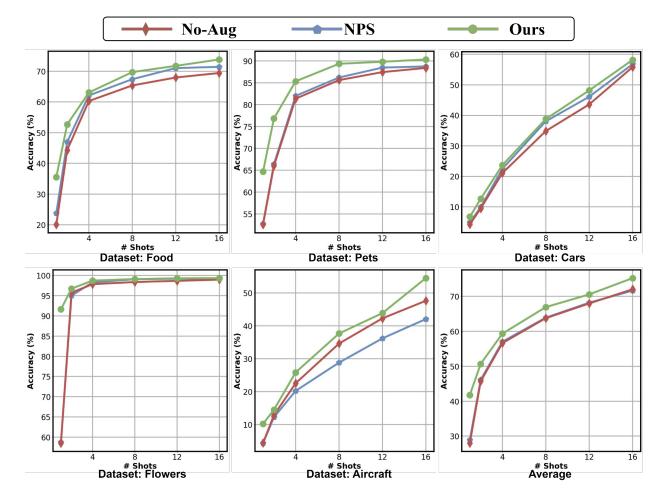
Hint-Aug: Evaluation Results

• A 2.22% higher accuracy with 50% less training data on Pet dataset



Hint-Aug: Evaluation Results

- A 2.22% higher accuracy with 50% less training data on Pet dataset
- +0.04%~+32.91% higher accuracy across different shots, tuning methods and datasets



Hint-Aug: Drawing Hints From Foundation Vision Transformers Towards Boosted Few-Shot Parameter-Efficient Tuning Zhongzhi Yu, Shang Wu, Yonggan Fu, Shunyao Zhang, and Yingyan (Celine) Lin

Georgia Institute of Technology

Paper Tag: WED-AM-273

The work was supported by the National Science Foundation (NSF) through the NSF CCF program (Award number: 2211815) and supported in part by CoCoSys, one of the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. **Project Page:**

