

Guided Recommendation for Model Fine-Tuning

Hao Li, Charless Fowlkes, Hao Yang, Onkar Dabeer, Zhuowen Tu, Stefano Soatto

AWS AI Labs

Tue-AM-346

Overview

Fine-tuning Pre-trained Models

• A large-scale pre-trained model zoo are important for broad domain coverage.

Model Selection

• Given a task and a bank of pre-trained models, MS selects the top few models for the best fine-tuning performance, avoiding the brute-forth fine-tuning.

Issues

- Improper assumption: fixed backbones.
- Hard to integrate prior knowledge (e.g., model capacity, dataset size).

Overview

Learning to Recommend Models

• We convert model selection as a model **recommendation** problem, which learns the model selection criteria from the past **training history**.

 $S_{ ext{FM}}(\mathbf{z}) = w_0 + \sum_{i=1}^{|z|} w_i z_i + \sum_{i=1}^{|z|-1} \sum_{i=i+1}^{|z|} \langle \mathbf{u}_i, \mathbf{u}_j
angle z_i z_j$

Training History

Recommendation Model

Embedding

Feature-Based MS: Basic Assumption

Linearization Assumption

• It is assumed that the model weights do not change much during fine-tuning, i.e., the final fine-tuned solution can be a linearized approximation

$$f_w(x) = f_{w_0}(x) + \nabla_w f_{w_0}(x)(w - w_0)$$

• The backbone can extract features on the target training set and the generalization ability is estimated based on these features with algorithms like LFC, PARC and LogME.

Feature-Based MS: LFC

• Label-Gradient/Feature Correlation (LGC/LFC) [Deshpande et al, 2021]

$$\mathbf{y}^T \Theta \mathbf{y} = (\nabla f_w(\mathbf{x}) \nabla f_w(\mathbf{x})^T) \cdot \mathbf{y} \mathbf{y}^T$$

 Θ can be approximated using features instead of gradients $\Theta_F = f_w(\mathbf{x}) f_w(\mathbf{x})^T$

Deshpande et al, A linearized framework and a new benchmark for model selection for fine-tuning, arXiv 2021

Feature-Based MS: PARC

- PARC [Bolya et al, 2021]
 - Similar to LFC, it calculates the Spearman's Rank Correlation between the two distance matrices for all pair of images.

$$D_{\theta} = 1 - \operatorname{corrcoef}(f_{\theta}(x))$$
 $D_{y} = 1 - \operatorname{corrcoef}(g(y))$

$$PARC(\theta, \mathcal{P}_n) = spearmanr(\{D_{\theta}[i, j] : i < j\}, \{D_y[i, j] : i < j\})$$

• Add heuristic of model depth with ad-hoc scaling.

$$S'_{\text{PARC}} = \frac{S_{\text{PARC}} - \mu^t}{\sigma^t} + \frac{\ell_s}{\ell_{\text{max}}}$$

Bolya et al, Scalable Diverse Model Selection for Accessible Transfer Learning, NeurIPS 2021

MS Issues I: Linearization Assumption

The linearization assumption could fail

- When the target data is much different from to the source data or the training dataset size is large.
- The MS score then becomes less accurate and the effect of model initialization diminishes.

MS Issues II: Integrating Additional Knowledge

Ad-hoc scaling for additional heuristic scores

- The heuristics (e.g. model depth/layers) may not apply for different architectures, such as ViTs.
- The scale of heuristics requires ad-hoc tuning.

$$S'_{\text{PARC}} = \frac{S_{\text{PARC}} - \mu^t}{\sigma^t} + \frac{\ell_s}{\ell_{\text{max}}}$$

- Missing meta feature and feature correlations
 - The effect of model's inductive bias is correlated with dataset characteristics, e.g., "a random initialized large model could generalize better than a small pre-trained model on a large dataset".
 - This correlation between model and dataset is not considered.

Learning To Recommend Models

Models

the training history of same or similar datasets/models will help the prediction, and the performance can be continuously improved with more data.

Training History

Learning To Recommend Models

Training History

			da	taset	featur	es			model features				additional features			
		[,	l		J		()							
		d _o	dı	d ₂	d3	d4	d ₅	m ₀	<i>m</i> 1	<i>m</i> ₂	<i>m</i> 3	m_4	m_5	<i>s</i> ₁	\$ ₂	у
ig jobs	<i>x</i> 0	1	0	0	0	0	0.2	0	1	0	0	0	0.8	0.7	0.6	0.9
	<i>x</i> ₁	0	0	1	0	0	0.3	0	0	0	1	0	0.5	0.6	0.4	0.8
uning	<i>x</i> ₂	0	0	0	0	1	0.4	0	0	0	0	1	0.7	0.5	0.7	0.6
ine-tu	<i>x</i> ₃	0	0	0	1	0	0.1	0	0	1	0	0	0.5	0.4	0.3	0.7
LL (<i>x</i> ₄	0	0	1	0	0	0.5	0	1	0	0	0	0.6	0.4	0.3	?

Embedding

Dataset and Model Representation

			da	ataset	featu	res			model features				additional features			
		[l													١
		d ₀	d1	d ₂	d ₃	d4	d ₅	<i>m</i> 0	<i>m</i> 1	<i>m</i> ₂	<i>m</i> 3	<i>m</i> 4	<i>m</i> 5	\$ ₁	\$ ₂	у
	<i>x</i> 0	1	0	0	0	0	0.2	0	1	0	0	0	0.8	0.7	0.6	0.9
jobs	<i>x</i> ₁	0	0	1	0	0	0.3	0	0	0	1	0	0.5	0.6	0.4	0.8
uning	<i>x</i> ₂	0	0	0	0	1	0.4	0	0	0	0	1	0.7	0.5	0.7	0.6
ine-ti	<i>x</i> ₃	0	0	0	1	0	0.1	0	0	1	0	0	0.5	0.4	0.3	0.7
Щ	x ₄	0	0	1	0	0	0.5	0	1	0	0	0	0.6	0.4	0.3	?

Dataset and Model Representation

- **task difficulty**: If a task can be solved with a simple model, then the task is relatively easy in comparison with other dataset.
- number of samples: a few-shot task is generally harder and often requires a strong model than a larger dataset size.
- **number of classes:** the task difficulty usually increase as the number of classes when the total images are fixed.

- architecture family: architectures of the same family usually have similar inductive biases as they consist of similar modules.
- **input size**: archs with higher resolution usually helps for downstream tasks.
- model capacity: a model with high capacity usually generalizes better with more data.
- model complexity: the calculation cost (GMACs) can represent the complexities.
- pre-trained domain: he pretrained domain matters for the downstream task performance.

- MS score: it considers the feasibility of the model's initial features.
- semantic distance: semantic embedding of labels of the target task and the source task
- any features that are relevant for performance prediction

Dataset and Model Representation

		d	ataset	featu	res			n	model features ad				ditional features		
										ι			[ι	ו
	d ₀	d1	d ₂	d ₃	d4	d ₅	m ₀	<i>m</i> 1	<i>m</i> ₂	<i>m</i> 3	m_4	<i>m</i> 5	s ₁	\$ ₂	у
<i>x</i> ₀	1	0	0	0	0	0.2	0	1	0	0	0	0.8	0.7	0.6	0.9

Field idx	Field Name	Feature Name	Туре	One-hot	Log	Dimension	Min	Max
1	dataset	dataset id	category	Yes	No	41	0	40
1	dataset	dataset size	scalar	No	Yes	1	1008	1200000
1	dataset	number of classes	scalar	No	Yes	1	2	1000
2	model	architecture id	category	Yes	No	405	0	404
2	model	architecture family id	category	Yes	No	10	0	1
2	model	pre-trained dataset id	category	Yes	No	3	0	2
2	model	input size	scalar	No	Yes	1	106	448
2	model	GMACs (G)	scalar	No	Yes	1	0.03	46.95
2	model	#Parameters (G)	scalar	No	Yes	1	1.88	88.59
3	MS score	LFC	scalar	No	No	1	0.002	0.792
3	MS score	LogME	scalar	No	No	1	-0.905	2.209
3	MS score	PARC	scalar	No	No	1	0.085	80.358

Embedding the Training History

Recommendation Models

Linear Regression (LR)

$$S_{\mathrm{LR}}(\mathbf{z}) = w_0 + \sum_{i=1}^{|z|} w_i z_i$$

 \mathbf{U}

[J							J
u ₀	u ₁	u ₂	u ₃	u_4	u_5	u ₆	u ₇	u ₈	u ₉	u ₁₀	u ₁₁	u ₁₂	u ₁₃
.1	.2	.4	.6	.7	.5	.2	.1	.2	.0	.0	.6	.7	.5
.2	.3	.2	.4	.5	.4	.3	.0	.0	.1	.0	.5	.6	.4
.3	.5	.1	.2	.1	.1	.1	.1	.0	.9	.1	.1	.3	.2
.1	.4	.5	.3	.4	.2	.4	.5	.1	.0	.2	.2	.2	.1

Factorization Machines (FM)

$$S_{ ext{FM}}(\mathbf{z}) = w_0 + \sum_{i=1}^{|z|} w_i z_i + \sum_{i=1}^{|z|-1} \sum_{j=i+1}^{|z|} \langle \mathbf{u}_i, \mathbf{u}_j
angle z_i z_j$$

Experimental Settings

Models

- Learning from the history of **single** dataset with **a subset** of models.
- Evaluating **unseen models** on the **same** dataset.

- Learning from the history of **single** dataset will **all** models.
- Evaluating known models on unseen datasets

Models

- Learning from the history of leave-oneout **datasets**.
- Evaluating known models on unseen tasks.

Learning from ImageNet and Predict for New Models

Models

- Learning from the history of **single** dataset with a **subset** of models.
- Evaluating **unseen models** on the **same** dataset.

80% of the 400+ models are used for training and the rest 20% models are used for evaluation.

Methods	Features	Imag Pre-trained	geNet
feature-based	$egin{array}{ccc} S_{ m LFC} & [10] \ S_{ m LogME} & [60] \ S_{ m PARC} & [5] \end{array}$	$\begin{array}{c} 0.65 \pm 0.07 \\ 0.35 \pm 0.09 \\ \textbf{0.83} \pm 0.04 \end{array}$	
LR (ours)	$\begin{array}{c} \mathbf{d}, \mathbf{m} \\ \mathbf{d}, \mathbf{m}, S_{\mathrm{LFC}} \\ \mathbf{d}, \mathbf{m}, S_{\mathrm{LogME}} \\ \mathbf{d}, \mathbf{m}, S_{\mathrm{PARC}} \end{array}$	$\begin{array}{c} 0.53 \pm 0.07 \\ 0.73 \pm 0.06 \\ 0.55 \pm 0.08 \\ \textbf{0.85} \pm 0.04 \end{array}$	
FM (ours)	$egin{array}{l} \mathbf{d}, \mathbf{m} \ \mathbf{d}, \mathbf{m}, S_{ ext{LFC}} \ \mathbf{d}, \mathbf{m}, S_{ ext{LogME}} \ \mathbf{d}, \mathbf{m}, S_{ ext{PARC}} \end{array}$	$\begin{array}{c} 0.54 \pm 0.06 \\ 0.70 \pm 0.12 \\ 0.55 \pm 0.09 \\ \textbf{0.84} \pm 0.05 \end{array}$	

Feature-based MS scores completely fail with random init, while learning-based MS can still get reasonable scores

Learning from ImageNet and Predict for New Datasets

Models

- Learning from the history of **single** dataset will **all** models.
- Evaluating known models on unseen datasets

The ImageNet column is the MS learned with all 409 ImageNet training jobs.

Methods	Methods Features		6 DomainNet	15 VTAB
	S _{LFC} [10]	0.55	0.63	0.14
feature-based MS	S_{LogME} [60]	0.54	0.52	0.20
	S_{PARC} [5]	0.54	0.50	0.13
		ImageNet	ImageNet	ImageNet
	\mathbf{d}, \mathbf{m}	<u>0.53</u>	<u>0.80</u>	<u>0.29</u>
I D (ours)	$\mathbf{d}, \mathbf{m}, S_{ ext{LFC}}$	0.67	0.84	0.38
LR (ours)	$\mathbf{d}, \mathbf{m}, S_{\text{LogME}}$	0.54	0.81	0.30
	$\mathbf{d}, \mathbf{m}, S_{\mathrm{PARC}}$	0.54	0.81	0.30
	\mathbf{d}, \mathbf{m}	0.53	0.81	0.35
FM (ours)	$\mathbf{d}, \mathbf{m}, S_{ ext{LFC}}$	0.64	0.82	0.39
1^{1} (Outs)	$\mathbf{d}, \mathbf{m}, S_{\text{LogME}}$	0.60	0.82	0.31
	$\mathbf{d}, \mathbf{m}, S_{\text{PARC}}$	0.56	0.86	0.30

Learning from All History and Predict for New Datasets

Models

- Learning from the history of leave-oneout **datasets**.
- Evaluating **known models** on **unseen tasks**.

The column of LOO (leave-one-out) denotes MS learned with combined training history of ImageNet jobs and all downstream jobs except jobs on the test dataset

Methods	Features	19 fine-gr	ained	6 Domai	nNet	15 VTAB		
	S _{LFC} [10]	0.55		0.63		0.14		
feature-based MS	S_{LogME} [60]	0.54		0.52	, ,	0.20		
	S_{PARC} [5]	0.54		0.50		0.13		
		ImageNet LOO In		ImageNet	LOO	ImageNet	LOO	
	\mathbf{d}, \mathbf{m}	<u>0.53</u>	<u>0.66</u>	<u>0.80</u>	0.82	0.29	0.37	
	$\mathbf{d}, \mathbf{m}, S_{ ext{LFC}}$	0.67	0.74	0.84	0.85	0.38	0.41	
LK (ours)	$\mathbf{d}, \mathbf{m}, S_{\text{LogME}}$	0.54	0.65	0.81	0.84	0.30	0.36	
	$\mathbf{d}, \mathbf{m}, S_{\mathrm{PARC}}$	0.54	0.66	0.81	0.85	0.30	0.40	
	\mathbf{d}, \mathbf{m}	0.53	0.65	<u>0.81</u>	0.85	0.35	0.39	
EM (ours)	$\mathbf{d}, \mathbf{m}, S_{ ext{LFC}}$	0.64	0.74	0.82	0.87	0.39	0.41	
	$\mathbf{d}, \mathbf{m}, S_{\text{LogME}}$	0.60	0.67	0.82	0.86	0.31	0.40	
	$\mathbf{d}, \mathbf{m}, S_{\text{PARC}}$	0.56	0.69	0.86	0.86	0.30	0.43	

Continuously Improved Model Recommendation

Models