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Background



Machine learning models are susceptible to adversarial exam-
ples

Figure 1: Example of adversarial examples. Image credit [2].
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Most of the existing defenses are not universally robust

Figure 2: Most of the existing defenses are not universally robust and fail to
defend against other adversaries [3, 4].
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Ultimate goal of robustness

Figure 3: Targeting robustness against multiple adversaries simultaneously [1].
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Previous Methods
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Our Analysis



Theoretical Analysis on SVM

We first introduce the data distribution and the SVM model.
Data Distribution
Data x and label y are sampled as

y u.a.r∼ {+1, −1}, x1 =
{

+y , w.p. p;
−y , w.p. 1 − p,

x2, . . . , xd+1
i.i.d.∼ N (µy , 1).

SVM Model
We train a linear SVM model fw(·) with soft-SVM loss on the data
sampled as above:

min
w

E(x,y)∼D
∑

p∈{1,2,∞}

γp max (0, 1 − yfw(x + δ(x)p)) ,

s.t. ∥w∥2 = 1 ,

where fw(x) = w⊤x, δp(x) is the p-adversarial example for x, and
γ = [γ1, γ2, γ∞] satisfies

∑
i∈{1,2,∞} γi = 1.
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Theoretical Analysis on SVM

We first found that under the following case, there will be player
domination.
Definition (Player dominates the cooperative game)

If ∃i ∈ [k] such that γt
i = 1 and γt

j = 0, ∀j ∈ [K ]/{i}, ∀t, then we call
that player dominates the bargaining game.

ℓinfty domination, Informal

Let µ ≥ 4/
√

d , ϵ∞ ≥ 2µ, p ≤ 0.977, ϵ∞ ≥ 2
d ϵ1 and ϵ∞ ≥

√
2
d ϵ2. With

MAX and MSD, ∞-player (∞-adversary) dominates the training
procedure as shown below.
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Theoretical Analysis on SVM

After analyzing the training dynamics of SVM, we notice that when the
∞-player dominates the bargaining game, and given ϵ∞ > µ, the SVM
model may not converge.

Theorem [Player domination makes the training procedure not
converge, Informal]
With MAX and MSD, if ∞-player dominates and ϵ∞ > µ, the weights
for the non-robust features flips over time, i.e.,
sign(wt

i ) = − sign(wt−1
i ), ∀i ≥ 2.
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Theoretical Analysis on Linear Model

Assuming the loss function of each player is denoted as ℓk , k ∈ [K ], which
is L-smooth and µ-strongly convex, we have the following theorems.
Theorem [MAX and MSD might not converge, Informal]
If the training is dominated by one player during the whole game, then
the loss of all players and the overall loss would increase as time t
grows.

Theorem [AVG’s loss decreases, Informal]
Using AVG to train the linear model, the overall loss decreases as time
t grows.
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Figure 4: An example under the linear case. 9



Our Method



AdaptiveBudget

AdaptiveBudget is designed to avoid the phenomenon of the same
player dominating the whole training procedure as this phenomenon
leads to non-convergence under SVM and Linear cases.
Algorithm 1 Framework of Multi-target Adversarial Training with Adaptive
Budget
Require: Training Epochs E , Training samples (X ,Y), adversarial budgets (ϵ∞, ϵ1, ϵ2), model f (·),

loss function ℓ.
1: for e ∈ [E ] do
2: for x, y ∈ (X ,Y) do
3: gp ← ℓ

′
(x + δp(x)), δp(x)← PGD(x, k, η, ℓ, ϵp , ℓ), ∀p ∈ {1, 2,∞}

4: Get adaptive budgets ϵ̂1, ϵ̂2, ϵ̂∞ ← AdaptiveBudget([g1, g2, g∞], [ϵ1, ϵ2, ϵ∞]);
5: Adversarial training using MAX, MSD or AVG with budgets (ϵ̂1, ϵ̂2, ϵ̂∞);
6: end for
7: end for
8: Return the classifier f .
9:

10: AdaptiveBudget(Gradients[g1, g2, g∞], Epsilon[ϵ1, ϵ2, ϵ∞]):
11: pmax ← argmaxp∈{∞,1,2} ∥gp∥, pmin ← argminp∈{∞,1,2} ∥gp∥;
12: pmid ← {1, 2,∞}/{pmax, pmin};
13: ϵpmax ← ϵpmax ·

∥gpmax ∥
∥gpmid ∥ , ϵpmin ← ϵpmin ·

∥gpmin ∥
∥gpmid ∥ ;

14: Return ϵ1, ϵ2, ϵ∞. 10



Experimental Results



Experimental Results on MNIST

Models ℓ1 ℓ2 ℓ∞ MAX MSD AVG
w. adaptive budget ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours)

Clean Accuracy (%) 97.2 99.1 99.2 98.6 98.9 98.9 98.2 98.3 98.9 99.1 99.1 99.1

ℓ1 PGD Robust Acc (%) 47.3* 67.8* 54.6* 67.1* 71.4↑ 69.7↑ 67.3* 66.8↓ 65.9↓ 70.6* 68.2↓ 68.9↓

ℓ2 PGD Robust Acc (%) 24.1* 66.8* 61.8* 67.2* 69.4↑ 69.5↑ 68.0* 67.9↓ 65.3↓ 69.4* 68.3↓ 68.3↓

ℓ∞ PGD Robust Acc (%) 0* 0.1* 88.9* 21.2* 67.2↑ 67.6↑ 62.4* 69.7↑ 69.7↑ 59.5* 67.7↑ 65.6↑

All PGD Robust Acc (%) 0* 0.1* 52.1* 21.2* 61.3↑ 61.4↑ 59.7* 62.1↑ 61.0↑ 55.4* 59.2↑ 58.2↑
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Experimental Results on CIFAR-10

Models ℓ1 ℓ2 ℓ∞ MAX MSD AVG
w. adaptive budget ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours)

Clean Accuracy 92.4 87.5 84.2 79.6 76.9 78.7 79.2 77.6 79.0 83.8 81.6 81.5

ℓ1 PGD Robust Acc (%) 90.8 31.7 17.3 44.0* 50.7↑ 51.7↑ 50.8* 51.2↑ 52.6↑ 55.7* 57.3↑ 56.3↑

ℓ2 PGD Robust Acc (%) 0.1 64.0 60.6 55.6* 63.4↑ 65.1↑ 64.3* 63.6↓ 65.5↑ 67.0* 66.6↓ 67.0

ℓ∞ PGD Robust Acc (%) 0 27.8 51.2 41.3* 47.5↑ 47.6↑ 45.7* 48.4↑ 47.2↑ 39.4* 45.5↑ 44.2↑

All PGD Robust Acc (%) 0 23.8 17.3 40.4* 46.0↑ 46.8↑ 44.1* 47.2↑ 46.4↑ 39.2* 45.2↑ 43.6↑

ℓ1 AA Robust Acc (%) 0 23.8 6.2 41.4* 45.7↑ 45.5↑ 45.5* 46.4↑ 46.7↑ 49.7* 52.7↑ 50.8↑

ℓ2 AA Robust Acc (%) 0 63.0 57.4 53.7* 60.4↑ 63.2↑ 61.9* 62.3↑ 62.1↑ 65.4* 64.6↓ 65.5↑

ℓ∞ AA Robust Acc (%) 0 26.1 48.0 38.4* 44.7↑ 44.1↑ 43.1* 45.2↑ 44.4↑ 37.0* 43.1↑ 42.1↑

All AA Robust Acc (%) 0 19.5 6.2 37.6* 42.9↑ 42.3↑ 41.6* 43.4↑ 43.0↑ 36.6* 42.5↑ 41.2↑
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Experimental Results on CIFAR-100

Models MAX MSD AVG
w. AdaptiveBudget ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours)

Clean Accuracy 55.49* 56.48 55.53 56.09* 55.52 54.94 59.94* 57.78 58.16

ℓ1 PGD Robust Acc (%) 25.45* 29.27↑ 29.78↑ 35.50* 30.31↓ 28.87↓ 30.35* 33.16↑ 32.62↑

ℓ2 PGD Robust Acc (%) 39.55* 40.00↑ 39.85↑ 40.14* 40.28↑ 39.28↓ 40.26* 41.03↑ 40.27↑

ℓ∞ PGD Robust Acc (%) 25.03* 25.34↑ 25.87↑ 24.83* 26.19↑ 25.59↑ 18.92* 21.81↑ 21.57↑

All PGD Robust Acc (%) 21.11* 24.14↑ 24.76↑ 25.10* 25.03↓ 24.43↓ 18.61* 21.55↑ 21.16↑

ℓ1 AA Robust Acc (%) 13.00* 23.00↑ 20.90↑ 25.10* 24.00↓ 24.20↓ 25.20* 28.60↑ 28.00↑

ℓ2 AA Robust Acc (%) 36.30* 35.60↓ 36.40↑ 37.60* 35.80↓ 36.40↓ 37.00* 37.90↑ 37.10↑

ℓ∞ AA Robust Acc (%) 22.00* 21.50↓ 22.30↑ 21.80* 22.80↑ 22.70↑ 16.30* 19.00↑ 19.70↑

All AA Robust Acc (%) 12.20* 20.60↑ 18.60↑ 21.00* 21.30↑ 21.50↑ 16.10* 18.90↑ 19.50↑
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Conclusion



Summary

• We show the first theoretical results on the convergence of MAX,
MSD, and AVG on the multi-target robustness.

• We design a novel algorithm namely AdaptiveBudget which is able
to alleviate the player domination phenomenon and thus might avoid
the non-convergence of MAX and MSD under SVM and Linear
cases.

• Experimental results show that AdaptiveBudget improves the
performance of MSD, MAX, and AVG.
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Thanks for listening!
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