Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective

Jinjing Zhu^{1*}, Haotian Bai^{1*}, Lin Wang TUE-AM-339

Visual Learning and Intelligent Systems Lab (VLIS LAB) Thrust of Artificial Intelligence, Information Hub, GZ Campus Department of Computer Science and Engineering, CWB Campus The Hong Kong University of Science and Technology (HKUST)

PMTrans Overview

Prior works have a a limitation: as the performance of cross-attention highly depends on the quality of pseudo labels, it becomes less effective when the domain gap becomes large.

We probe a new problem for UDA: how to smoothly bridge the source and target domains by constructing an intermediate domain with an effective ViT-based solution?

Overview of the proposed PMTrans framework

Research Background

Research Background

A significant line of solutions reduces the domain gap by producing pseudo labels for target samples.

However, prior method has a distinct limitation: as the performance of cross-attention highly depends on the quality of pseudo labels, it becomes less effective when the domain gap becomes large.

Results of our PMTrans and SOTA methods on DomainNet.

How to smoothly bridge the source and target domains by constructing an intermediate domain with an effective ViT-based solution?

PatchMix

Let \mathcal{P}_{λ} be a linear interpolation operation on two pairs of randomly drawn samples (x^s, y^s) and (x^t, y^t) . Then with $\lambda_k \sim Beta(\beta, \gamma)$, it interpolates the **k**-th source patch x_k^s and target patch x_k^t to reconstruct a mixed representation with **n** patches.

$$oldsymbol{x}^i = \mathcal{P}_\lambda(oldsymbol{x}^s,oldsymbol{x}^t), \ oldsymbol{x}^i_k = \lambda_k \odot oldsymbol{x}^s_k + (1-\lambda_k) \odot oldsymbol{x}^t_k, \ oldsymbol{y}^i = \mathcal{P}_\lambda(oldsymbol{y}^s,oldsymbol{y}^t) = rac{(\sum_{k=1}^n \lambda_k) oldsymbol{y}^s + (\sum_{k=1}^n (1-\lambda_k)) oldsymbol{y}^t}{n}$$

Mixup

TransMix

PatchMix

PatchMix and Mixup variants.

A min-max CE game

We interpret UDA as a min-max CE game among three players, namely the feature extractor (\mathcal{F}), classifier (\mathcal{C}), and PatchMix module (\mathcal{P}).

$$egin{aligned} &J_{\mathcal{F}}\left(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{-\mathcal{F}}
ight) \coloneqq \mathcal{L}^{S}_{cls}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{C}}) + lpha ext{CE}_{s,i,t}(oldsymbol{\omega}), \ &J_{\mathcal{C}}\left(oldsymbol{\omega}_{\mathcal{C}},oldsymbol{\omega}_{-\mathcal{C}}
ight) \coloneqq \mathcal{L}^{S}_{cls}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{C}}) + lpha ext{CE}_{s,i,t}(oldsymbol{\omega}), \ &J_{\mathcal{P}}\left(oldsymbol{\omega}_{\mathcal{P}},oldsymbol{\omega}_{-\mathcal{P}}
ight) \coloneqq -lpha ext{CE}_{s,i,t}(oldsymbol{\omega}), \end{aligned}$$

Nash Equilibrium

The equilibrium states each player's strategy is the best response to other players. And a point $\omega^* \in \Omega$ is Nash Equilibrium if

$$\forall \omega_m \in \Omega_i, \forall m \in \{\mathcal{F}, \mathcal{C}, \mathcal{P}\}, s. t. J_m(\omega_m^*, \omega_{-m}^*) \leq J_m(\omega_m, \omega_{-m}^*).$$

Proposed framework

PMTrans consists of three players: the PatchMix module empowered by a patch embedding (Emb) layer and a learnable Beta distribution (Beta), ViT encoder, and classifier.

Semi-supervised mixup loss

In label space:

Use supervised mixup loss in the label space to measure the domain divergence based on CE loss.

$$egin{split} \mathcal{L}_{l}^{I,S}(oldsymbol{\omega}) &= \mathbb{E}_{ig(oldsymbol{x}^{i},oldsymbol{y}^{i}ig) \sim D^{i}}\lambda^{s}\ell\left(\mathcal{C}\left(\mathcal{F}\left(oldsymbol{x}^{i}
ight)
ight),oldsymbol{y}^{s}
ight) \ \mathcal{L}_{l}^{I,T}(oldsymbol{\omega}) &= \mathbb{E}_{ig(oldsymbol{x}^{i},oldsymbol{y}^{i}ig) \sim D^{i}}\lambda^{t}\ell\left(\mathcal{C}\left(\mathcal{F}\left(oldsymbol{x}^{i}
ight)
ight),oldsymbol{y}^{t}
ight) \ \mathcal{L}_{l}(oldsymbol{\omega}) &= \mathcal{L}_{l}^{I,S}(oldsymbol{\omega}) + \mathcal{L}_{l}^{I,T}(oldsymbol{\omega}) \end{split}$$

In feature space

Propose to minimize the discrepancy between the similarity of \square Feat the features and the similarity of labels in the feature space.

$$egin{split} \mathcal{L}_{f}^{I,S}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) &= \mathbb{E}_{oldsymbol{x}^{i},oldsymbol{y}^{i}}\lambda^{s}\ell\left(d(oldsymbol{x}^{i},oldsymbol{x}^{s}),oldsymbol{y}^{is}
ight) \ \mathcal{L}_{f}^{I,T}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) &= \mathbb{E}_{oldsymbol{x}^{i},oldsymbol{y}^{i}}\lambda^{t}\ell\left(d(oldsymbol{x}^{i},oldsymbol{x}^{s}),oldsymbol{y}^{it}
ight) \ \mathcal{L}_{f}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) &= \mathcal{L}_{f}^{I,S}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) + \mathcal{L}_{f}^{I,T}(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) \end{split}$$

(a) The illustration of two proposed semi-supervised losses. (b) Label similarity y^{is} and y^{it}.

A three-player game

The min-max CE game aims to align distributions in the feature and label spaces.

$$ext{CE}_{s,i,t}(oldsymbol{\omega}) = \mathcal{L}_f(oldsymbol{\omega}_{\mathcal{F}},oldsymbol{\omega}_{\mathcal{P}}) + \mathcal{L}_l(oldsymbol{\omega})$$

The total objective of PMTrans is defined as:

$$J(\boldsymbol{\omega}) := \mathcal{L}_{cls}^{S}(\boldsymbol{\omega}_{\mathcal{F}}, \boldsymbol{\omega}_{\mathcal{C}}) + \alpha \mathbf{C} \mathbf{E}_{s,i,t}(\boldsymbol{\omega})$$

Method		$A \rightarrow C$	$A{\rightarrow}P$	$A \rightarrow R$	$\mathbf{C} ightarrow \mathbf{A}$	$\mathbf{C} \to \mathbf{P}$	$\mathbf{C} ightarrow \mathbf{R}$	$P \!$	$P {\rightarrow} C$	$P {\rightarrow} R$	$R{\rightarrow}A$	$R{\rightarrow}C$	$R{\rightarrow}P$	Avg
ResNet-50		44.9	66.3	74.3	51.8	61.9	63.6	52.4	39.1	71.2	63.8	45.9	77.2	59.4
MCD	Vet	48.9	68.3	74.6	61.3	67.6	68.8	57.0	47.1	75.1	69.1	52.2	79.6	64.1
MDD	tes	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
BNM	L R	56.7	77.5	81.0	67.3	76.3	77.1	65.3	55.1	82.0	73.6	57.0	84.3	71.1
FixBi		58.1	77.3	80.4	67.7	79.5	78.1	65.8	57.9	81.7	76.4	62.9	86.7	72.7
TVT		74.9	86.8	89.5	82.8	88.0	88.3	79.8	71.9	90.1	85.5	74.6	90.6	83.6
Deit-based		61.8	79.5	84.3	75.4	78.8	81.2	72.8	55.7	84.4	78.3	59.3	86.0	74.8
CDTrans-Deit	F	68.8	85.0	86.9	81.5	87.1	87.3	79.6	63.3	88.2	82.0	66.0	90.6	80.5
PMTrans-Deit	Vi.	71.8	87.3	88.3	83.0	87.7	87.8	78.5	67.4	89.3	81.7	70.7	92.0	82.1
ViT-based		67.0	85.7	88.1	80.1	84.1	86.7	79.5	67.0	89.4	83.6	70.2	91.2	81.1
SSRT-ViT		75.2	89.0	91.1	85.1	88.3	89.9	85.0	74.2	91.2	85.7	78.6	91.8	85.4
PMTrans-ViT		81.2	91.6	92.4	88.9	91.6	93.0	88.5	80.0	93.4	89.5	82.4	94.5	88.9
Swin-based	in	72.7	87.1	90.6	84.3	87.3	89.3	80.6	68.6	90.3	84.8	69.4	91.3	83.6
PMTrans-Swin	Sv	81.3	92.9	92.8	88.4	93.4	93.2	87.9	80.4	93.0	89.0	80.9	94.8	89.0

Comparison with SOTA methods on Office-Home.

PMTrans can obtain more robust transferable representations than the CNN-based and ViT-based methods.

Method		$A \rightarrow W$	$D{\rightarrow}W$	$W {\rightarrow} D$	$A{\rightarrow}D$	$D{\rightarrow}A$	$W {\rightarrow} A$	Avg
ResNet-50		68.9	68.4	62.5	96.7	60.7	99.3	76.1
BNM	Net	91.5	98.5	100.0	90.3	70.9	71.6	87.1
MDD	les	94.5	98.4	100.0	93.5	74.6	72.2	88.9
SCDA		94.2	98.7	99.8	95.2	75.7	76.2	90.0
FixBi		96.1	99.3	100.0	95.0	78.7	79.4	91.4
TVT		96.4	99.4	100.0	96.4	84.9	86.0	93.9
Deit-based		89.2	98.9	100.0	88.7	80.1	79.8	89.5
CDTrans-Deit	E	96.7	99.0	100.0	97.0	81.1	81.9	92.6
PMTrans-Deit	Vi	99.0	99.4	100.0	96.5	81.4	82.1	93.1
ViT-based		91.2	99.2	100.0	90.4	81.1	80.6	91.1
SSRT-ViT		97.7	99.2	100.0	98.6	83.5	82.2	93.5
PMTrans-ViT		99.1	99.6	100.0	99.4	85.7	86.3	95.0
Swin-based	vin	97.0	99.2	100.0	95.8	82.4	81.8	92.7
PMTrans-Swin	SI	99.5	99.4	100.0	99.8	86.7	86.5	95.3

Comparison with SOTA methods on Office-31.

PMTrans achieves the best performance on each task and outperforms the prior SOTA methods with identical backbones.

Method		plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg
ResNet-50		55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
BNM		89.6	61.5	76.9	55.0	89.3	69.1	81.3	65.5	90.0	47.3	89.1	30.1	70.4
MCD	Net	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9
SWD	Ses	90.8	82.5	81.7	70.5	91.7	69.5	86.3	77.5	87.4	63.6	85.6	29.2	76.4
FixBi		96.1	87.8	90.5	90.3	96.8	95.3	92.8	88.7	97.2	94.2	90.9	25.7	87.2
TVT		82.9	85.6	77.5	60.5	93.6	98.2	89.4	76.4	93.6	92.0	91.7	55.7	83.1
Deit-based		98.2	73.0	82.5	62.0	97.3	63.5	96.5	29.8	68.7	86.7	96.7	23.6	73.2
CDTrans-Deit	Н	97.1	90.5	82.4	77.5	96.6	96.1	93.6	88.6	97.9	86.9	90.3	62.8	88.4
PMTrans-Deit	Vi	98.2	92.2	88.1	77.0	97.4	95.8	94.0	72.1	97.1	95.2	94.6	51.0	87.7
ViT-based		99.1	60.7	70.1	82.7	96.5	73.1	97.1	19.7	64.5	94.7	97.2	15.4	72.6
SSRT-ViT		98.9	87.6	89.1	84.8	98.3	98.7	96.3	81.1	94.8	97.9	94.5	43.1	88.8
PMTrans-ViT		98.9	93.7	84.5	73.3	99.0	98.0	96.2	67.8	94.2	98.4	96.6	49.0	87.5
Swin-based	/in	99.3	63.4	85.9	68.9	95.1	79.6	97.1	29.0	81.4	94.2	97.7	29.6	76.8
PMTrans-Swin	Sv	99.4	88.3	88.1	78.9	98.8	98.3	95.8	70.3	94.6	98.3	96.3	48.5	88.0

Comparison with SOTA methods on VisDA-2017.

PMTrans also surpasses the SOTA methods on several sub-categories, such as "horse" and "sktbrd".

MCD	clp	inf	pnt	qdr	rel	skt	Avg	SWD	clp	inf	pnt	qdr	rel	skt	Avg	BNM	clp	inf	pnt	qdr	rel	skt	Avg
clp	-	15.4	25.5	3.3	44.6	31.2	24.0	clp	-	14.7	31.9	10.1	45.3	36.5	27.7	clp	-	12.1	33.1	6.2	50.8	40.2	28.5
inf	24.1	-	24.0	1.6	35.2	19.7	20.9	inf	22.9	-	24.2	2.5	33.2	21.3	20.0	inf	26.6	-	28.5	2.4	38.5	18.1	22.8
pnt	31.1	14.8	-	1.7	48.1	22.8	23.7	pnt	33.6	15.3	-	4.4	46.1	30.7	26.0	pnt	39.9	12.2	-	3.4	54.5	36.2	29.2
qdr	8.5	2.1	4.6	-	7.9	7.1	6.0	qdr	15.5	2.2	6.4	-	11.1	10.2	9.1	qdr	17.8	1.0	3.6	-	9.2	8.3	8.0
rel	39.4	17.8	41.2	1.5	-	25.2	25.0	real	41.2	18.1	44.2	4.6	-	31.6	27.9	rel	48.6	13.2	49.7	3.6	-	33.9	29.8
skt	37.3	12.6	27.2	4.1	34.5	-	23.1	skt	44.2	15.2	37.3	10.3	44.7	-	30.3	skt	54.9	12.8	42.3	5.4	51.3	-	33.3
Avg	28.1	12.5	24.5	2.4	34.1	21.2	20.5	Avg	31.5	13.1	28.8	6.4	36.1	26.1	23.6	Avg	37.6	10.3	31.4	4.2	40.9	27.3	25.3
CGDM	clp	inf	pnt	qdr	rel	skt	Avg	MDD	clp	inf	pnt	qdr	rel	skt	Avg	SCDA	clp	inf	pnt	qdr	rel	skt	Avg
clp	-	16.9	35.3	10.8	53.5	36.9	30.7	clp	-	20.5	40.7	6.2	52.5	42.1	32.4	clp	-	18.6	39.3	5.1	55.0	44.1	32.4
inf	27.8	-	28.2	4.4	48.2	22.5	26.2	inf	33.0	-	33.8	2.6	46.2	24.5	28.0	inf	29.6	-	34.0	1.4	46.3	25.4	27.3
pnt	37.7	14.5	-	4.6	59.4	33.5	30.0	pnt	43.7	20.4	-	2.8	51.2	41.7	32.0	pnt	44.1	19.0	-	2.6	56.2	42.0	32.8
qdr	14.9	1.5	6.2	-	10.9	10.2	8.7	qdr	18.4	3.0	8.1	-	12.9	11.8	10.8	qdr	30.0	4.9	15.0	-	25.4	19.8	19.0
rel	49.4	20.8	47.2	4.8	-	38.2	32.0	rel	52.8	21.6	47.8	4.2	-	41.2	33.5	rel	54.0	22.5	51.9	2.3	-	42.5	34.6
skt	50.1	16.5	43.7	11.1	55.6	-	35.4	skt	54.3	17.5	43.1	5.7	54.2	-	35.0	skt	55.6	18.5	44.7	6.4	53.2	-	35.7
Avg	36.0	14.0	32.1	7.1	45.5	28.3	27.2	Avg	40.4	16.6	34.7	4.3	43.4	32.3	28.6	Avg	42.6	16.7	37.0	3.6	47.2	34.8	30.3
CDTrans	clp	inf	pnt	qdr	rel	skt	Avg	SSRT	clp	inf	pnt	qdr	rel	skt	Avg	PMTrans	clp	inf	pnt	qdr	rel	skt	Avg
clp	-	29.4	57.2	26.0	72.6	58.1	48.7	clp	-	33.8	60.2	19.4	75.8	59.8	49.8	clp	-	34.2	62.7	32.5	79.3	63.7	54.5
inf	57.0	-	54.4	12.8	69.5	48.4	48.4	inf	55.5	-	54.0	9.0	68.2	44.7	46.3	inf	67.4	-	61.1	22.2	78.0	57.6	57.3
pnt	62.9	27.4	-	15.8	72.1	53.9	46.4	pnt	61.7	28.5	-	8.4	71.4	55.2	45.0	pnt	69.7	33.5	-	23.9	79.8	61.2	53.6
qdr	44.6	8.9	29.0	-	42.6	28.5	30.7	qdr	42.5	8.8	24.2	-	37.6	33.6	29.3	qdr	54.6	17.4	38.9	-	49.5	41.0	40.3
rel	66.2	31.0	61.5	16.2	-	52.9	45.6	rel	69.9	37.1	66.0	10.1	-	58.9	48.4	rel	74.1	35.3	70.0	25.4	-	61.1	53.2
skt	69.0	29.6	59.0	27.2	72.5	-	51.5	skt	70.6	32.8	62.2	21.7	73.2	-	52.1	skt	73.8	33.0	62.6	30.9	77.5	-	55.6
Avg	59.9	25.3	52.2	19.6	65.9	48.4	45.2	Avg	60.0	28.2	53.3	13.7	65.3	50.4	45.2	Avg	67.9	30.7	59.1	27.0	72.8	56.9	62.9

Comparison with SOTA methods on DomainNet.

PMTrans outperforms the SOTA methods by +17.7% accuracy. Incredibly, PMTrans surpasses the SOTA methods in all the 30 subtasks.

T-SNE Visualization

t-SNE visualizations for task $A \rightarrow C$ on the Office-Home dataset.

Compared with Swin-based and PMTrans-Swin, our PMTrans model can better align the two domains by constructing the intermediate domain to bridge them.

Ablation Study

Effect of semi-supervised loss

\mathcal{L}^{S}_{cls}	\mathcal{L}_{f}	\mathcal{L}_l	$ A \rightarrow C$	$A \rightarrow P$	$A \rightarrow R$	$\mathbf{C} ightarrow \mathbf{A}$	$\mathbf{C} \to \mathbf{P}$	$\mathbf{C} ightarrow \mathbf{R}$	$P \rightarrow A$	$P \rightarrow C$	$P \rightarrow R$	$R \rightarrow A$	$R{\rightarrow}C$	$R{\rightarrow}P$	Avg
\checkmark			72.7	87.1	90.6	84.3	87.3	89.3	80.6	68.6	90.3	84.8	69.4	91.3	83.6
\checkmark	\checkmark		73.9	87.5	91.0	85.3	87.9	89.9	82.8	72.1	91.2	86.3	74.1	92.4	84.6
\checkmark		\checkmark	79.2	91.8	92.3	88.0	92.6	93.0	87.1	77.8	92.5	88.2	78.4	93.9	87.9
\checkmark	\checkmark	\checkmark	81.3	92.9	92.8	88.4	93.4	93.2	87.9	80.4	93.0	89.0	80.9	94.8	89.0

Effect of learning parameters

Method	$A \rightarrow C$	$A {\rightarrow} P$	$A \rightarrow R$	$\mathbf{C} ightarrow \mathbf{A}$	$\boldsymbol{C} \to \boldsymbol{P}$	$\mathbf{C} ightarrow \mathbf{R}$	$P \!$	$P \rightarrow C$	$P \rightarrow R$	$R \rightarrow A$	$R{\rightarrow}C$	$R{\rightarrow}P$	Avg
Beta(1,1)	79.9	92.0	92.3	88.6	92.6	92.4	86.9	79.0	92.4	88.2	79.3	94.0	88.1
Beta(2,2)	79.9	92.1	92.7	88.4	92.4	92.7	86.9	79.5	92.1	88.1	79.6	94.3	88.2
Learning	81.3	92.9	92.8	88.4	93.4	93.2	87.9	80.4	93.0	89.0	80.9	94.8	89.0

Effect of PatchMix

Method	$A \rightarrow C$	$A {\rightarrow} P$	$A \rightarrow R$	$\mathbf{C} ightarrow \mathbf{A}$	$\boldsymbol{C} \to \boldsymbol{P}$	$\mathbf{C} ightarrow \mathbf{R}$	$P \rightarrow A$	$P \rightarrow C$	$P \rightarrow R$	$R \rightarrow A$	$R \rightarrow C$	$R{\rightarrow}P$	Avg
Mixup	79.4	92.4	92.6	87.5	92.8	92.4	86.8	80.3	92.5	88.2	79.7	95.4	88.3
CutMix	79.2	91.2	92.2	87.6	91.8	91.8	86.0	77.8	92.6	88.2	78.4	94.1	87.6
PatchMix	81.3	92.9	92.8	88.4	93.4	93.2	87.9	80.4	93.0	89.0	80.9	94.8	89.0

Conclusion

- 1. We proposed a novel method, PMTrans, an optimization solution for UDA from a game perspective.
- 2. PMTrans achieved the SOTA results on three benchmark UDA datasets, outperforming the prior methods by a large margin.
- 3. We plan to implement our PatchMix and the two semi-supervised mixup losses to solve selfsupervised and semi-supervised learning problems.
- 4. We will also exploit our method to tackle the challenging downstream tasks, e.g., semantic segmentation and object detection.

Thanks !

Email: zhujinjing.hkust@gmail.com

https://vlis2022.github.io/cvpr23/PMTrans