

Federated Learning with Data-Agnostic Distribution Fusion

Jian-hui Duan, Wenzhong Li*, Derun Zou, Ruichen Li, Sanglu Lu State Key Laboratory for Novel Software Technology, Nanjing University Nanjing, China

Data distribution heterogeneity in federated learning usually cause accuracy drop in global model

Introduction

- Data distribution of five clients can be represented by a distribution fusion model with three virtual components.
- Client models can be aggregated based on components to better approach centralized training.

Problem Definition

First step is to modify the optimizing target:

reallocate local models with weight b_{km} to m component, then aggregate component with weight π_m .

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \sum_{k=1}^{K} \frac{n_k}{n} \mathcal{L}_k(\mathbf{w})$$

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \sum_{m=1}^{M} \pi_m \sum_{k=1}^{K} b_{km} \mathcal{L}_k(\mathbf{w})$$
Virtual Virtual
Componer Virtual
Componer Allocation
Weight Weight

Variational AutoEncoder

Optimal aggregation weights require accurate local data distributions, we gather parameters of normalization layers, and use Variational AutoEncoder to infer local distribution parameters, in order to construct local data distributions.

Variational AutoEncoder

Optimizing Procedure

To better optimize distribution parameters, we design following sampling methods:

$$\lambda_{k} \overset{i.i.d.}{\sim} Beta(\zeta_{m}, \kappa_{m}) \qquad \text{Sampling} \qquad \lambda_{k} \sim (1 - \xi^{\frac{1}{\kappa_{k}}})^{\frac{1}{\zeta_{k}}}, \text{ where } \xi \sim Uniform(0, 1)$$
$$\mathbf{c}_{k} \sim Bernoulli(\prod_{m=1}^{M} \lambda_{km}) \quad \text{Sampling} \quad \mathbf{c}_{km} = \arg \max_{i} (g_{i} + \log \prod_{i=1}^{2} \lambda_{ki}) \text{ Where } g_{i} \sim Gumbel(0, 1)$$

Datasets:

Datasets	Data Type	Train	Test	Total
MNIST[25]	1 channel image	60,000	10,000	70,000
Fashion-MNIST[44]	1 channel image	60,000	10,000	70,000
CIFAR-10[22]	3 channel image	50,000	10,000	60,000
Sentiment140[8]	Text data	-	_	1,600,000

BackBone Models:

ResNet18[9], DenseNet121[11], MobileNetV2[36], LeNet[24], BiLSTM[] Benchmarks:

Single-model: FedAvg[30], FedProx[26], Fed-GN[10], FedMA[43] Multi-model: FeSEM[46], IFCA[7], FedCluster[2], FedGroup[6]

FedFusion(blue line) shows the lowest loss, and converges the fastest among all evaluated algorithms

	Dataset	CIFAR-10		FMNIST	MNIST	Sent140	
	Model	ResNet18	DenseNet121	MobileNetV2	LeNet	LeNet	BiLSTM
Single-model	FedAvg	68.78 (±0.89)	63.33 (±0.67)	54.69 (±3.92)	79.20 (±1.15)	97.32 (±0.04)	58.33 (±2.03)
	FedProx	70.18 (±0.45)	66.85 (±0.93)	55.03 (±2.77)	80.03 (±0.98)	97.55 (±0.02)	59.73 (±1.38)
	Fed-GN	72.57 (±0.78)	70.02 (±1.36)	56.43 (±1.92)	81.11 (±0.74)	97.88 (±0.02)	63.41 (±1.94)
	FedMA	73.43 (±1.03)	70.13 (±1.71)	59.61 (±2.01)	81.02 (±1.35)	98.06 (±0.03)	60.86 (±2.42)
Multi-model	FeSEM	67.78 (±2.58)	62.65 (±0.82)	53.82 (±3.69)	78.18 (±1.45)	96.24 (±0.17)	59.57 (±3.41)
	IFCA	73.04 (±1.45)	70.85 (±2.03)	58.93 (±2.45)	80.82 (±1.29)	97.09 (±0.11)	60.82 (±2.74)
	FedCluster	72.57 (±0.78)	68.77 (±1.38)	58.18 (±1.22)	79.11 (±0.74)	97.88 (±0.02)	63.41 (±1.94)
	FedGroup	74.38 (±1.92)	71.63 (±0.74)	59.86 (±2.09)	81.32 (±2.07)	97.37 (±0.61)	63.61 (±3.26)
	FedFusion	81.26 (±0.82)	75.92 (±1.25)	62.88 (±1.21)	83.16 (±0.74)	98.49 (±0.04)	67.51 (±1.71)

Comparison of average test accuracy on non-IID datasets

Original Data Distribution Of MNIST Dataset Data Distribution Of MNIST Dataset Inferred By FedFusion Original Data Distribution Of CIFAR-10 Dataset Data Distribution Of CIFAR-10 Dataset Inferred by FedFusion

FedFusion accurately infer and reconstruct global data distribution, gives Fedfusion ability to approach centralized training.

(a) ResNet18 on CIFAR-10

(b) BiLSTM on Sent140

Normalization layer in models trained by FedFusion has fewer bias compared with centralized trained model, also shows FedFusion approximate centralized training well.

Comparison of feature distribution bias

With different hyper-parameter settings, FedFusion shows better robustness.

Thank You!