

Learning to Generate Text-grounded Mask for Open-world Semantic Segmentation from Only Image-Text Pairs

Junbum Cha, Jonghwan Mun, Byungseok Roh

kakao brain

Poster: WED-AM-279

Open-world Semantic Segmentation

learning an universal model to segment **arbitrary concepts** beyond pre-defined categories

from Only Image-Text Pairs

using only image-text pairs without any segmentation annotation

OPEN-WORLD SEMANTIC SEGMENTATION

- Open-world segmentation model can segment different dog species,

OPEN-WORLD SEMANTIC SEGMENTATION

- Open-world segmentation model can segment different dog species, **bananas by color**,

OPEN-WORLD SEMANTIC SEGMENTATION

- Open-world segmentation model can segment different dog species, bananas by color, and **even proper nouns** such as Frodo, Gollum, and Samwise

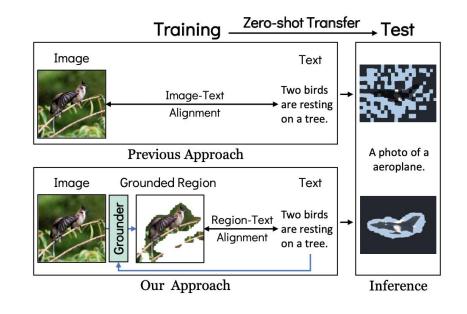
REGION-TEXT ALIGNMENT

- Open-world segmentation is conducted by region-text alignment
- In inference, the model identifies regions in the image that align with the given text queries



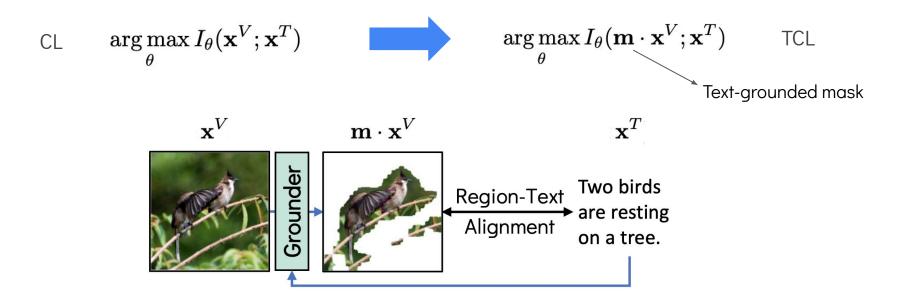
TRAIN-TEST DISCREPANCY IN EXISTING WORKS

All of the existing methods train the model via **image-text alignment**, even though the target task requires **region-text alignment**



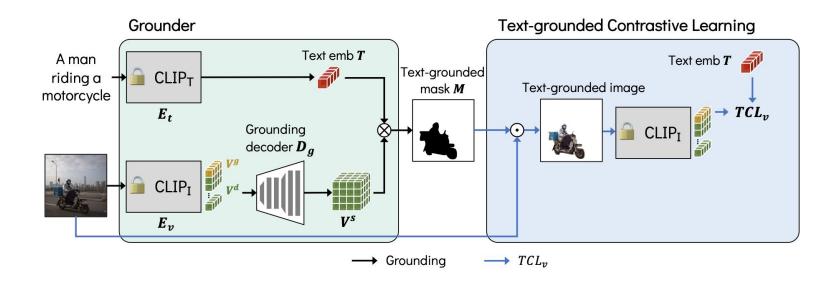
TCL: TEXT-GROUNDED CONTRASTIVE LEARNING

We propose Text-grounded Contrastive Learning (TCL) to let the model learn region-text alignment instead of image-text alignment in training time



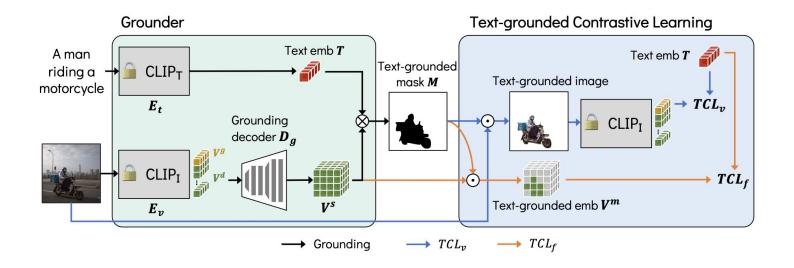
TCL FRAMEWORK

- 1. Grounder generates text-grounded mask M
- 2. TCL loss is computed by incorporating text-grounded image into contrastive learning



FEATURE-LEVEL TCL LOSS

- (Image-level) TCL loss only can consider "positive" text-grounded masks
- We introduce feature-level TCL loss to incorporate "negative" masks into our objective



image

text

A man riding a

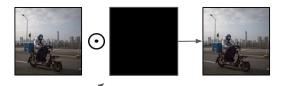
motorcycle

*

positive

negative

PREVENTING TRIVIAL SOLUTION



- There is a trivial solution in this framework: generating <u>full-mask</u> independent of the text
- To prevent this trivial solution, we introduce area TCL loss:

A man riding a motorcycle

M-

$$\mathcal{L}_{area} = \left\| p^{+} - \mathbb{E} \left[\overline{\mathbf{M}^{+}} \right] \right\|_{1} + \left\| p^{-} - \mathbb{E} \left[\overline{\mathbf{M}^{-}} \right] \right\|_{1}$$
Expectation of positive text-grounded mask area text-grounded mask area

Smooth Regularization

Finally, we introduce a smooth regularization loss via total variation (TV) loss:

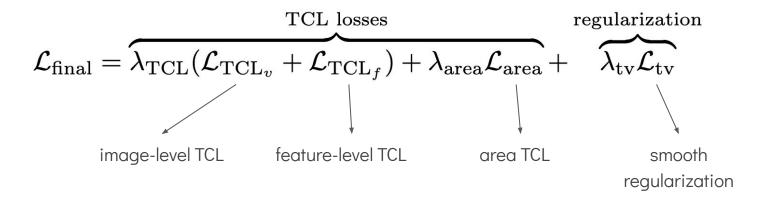
$$\mathcal{L}_{\mathrm{tv}} = \|\mathbf{M}\|_{\mathrm{TV}} + \|\mathbf{V}^s\|_{\mathrm{TV}}$$
text-grounded mask dense image embedding

where

$$ig\| m{y} ig\|_{\mathsf{TV}} = \sum_{i,j} \sqrt{ig| y_{i+1,j} - y_{i,j} ig|^2} + \sqrt{ig| y_{i,j+1} - y_{i,j} ig|^2} = \sum_{i,j} ig| y_{i+1,j} - y_{i,j} ig| + ig| y_{i,j+1} - y_{i,j} ig|^2$$

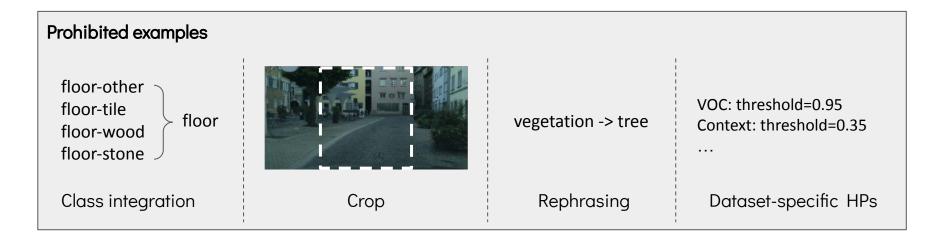
SUM UP

We introduce TCL loss to let the model learn **region-text alignment**, instead of image-text alignment



ZERO-SHOT EVALUATION PROTOCOL

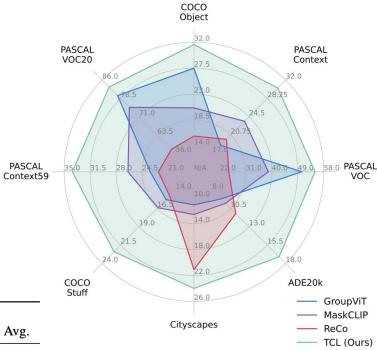
- Since the open-world semantic segmentation task is introduced recently, evaluation protocols vary across studies
- For a fair comparison, we present a unified evaluation protocol



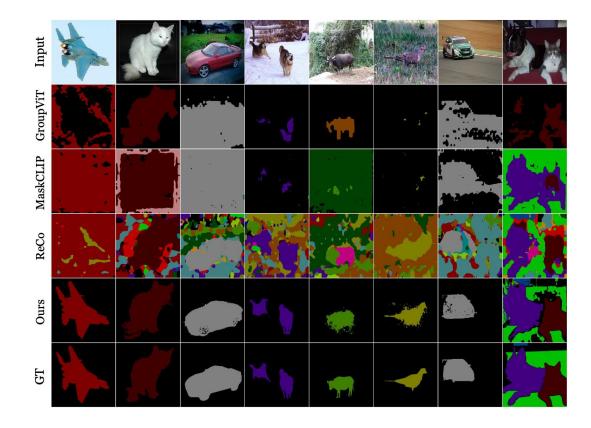
QUANTITATIVE RESULTS

TCL remarkably outperforms previous methods in every dataset

	with background class			without background class					
Methods	VOC	Context	Object	VOC20	Context59	Stuff	City	ADE	Avg.
GroupViT (YFCC)	49.5	19.0	24.3	74.1	20.8	12.6	6.9	8.7	27.0
GroupViT (RedCaps)	<u>50.4</u>	18.7	27.5	<u>79.7</u>	23.4	15.3	11.1	9.2	<u>29.4</u>
MaskCLIP [†]	29.3	21.1	15.5	53.7	23.3	14.7	21.6	10.8	23.7
MaskCLIP	38.8	<u>23.6</u>	20.6	74.9	<u>26.4</u>	<u>16.4</u>	12.6	9.8	27.9
ReCo	25.1	19.9	15.7	57.7	22.3	14.8	21.1	<u>11.2</u>	23.5
TCL (Ours)	55.0 (+4.6)	30.4 (+6.8)	31.6 (+4.1)	83.2 (+3.5)	33.9 (+7.5)	22.4 (+6.0)	24.0 (+2.4)	17.1 (+5.9)	37.2 (+7.8)



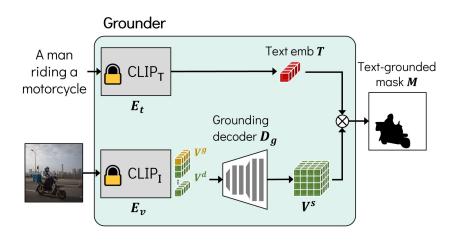
QUALITATIVE COMPARISON ON PASCAL VOC



QUALITATIVE EXAMPLES IN THE WILD

GROUNDING VISUALIZATION

Grounding decoder lets the model learn region-text alignment



ABLATION STUDIES

Table (a) indicates that TCL loss significantly improves segmentation performance by learning region-text alignment

[B] Training the grounding decoder without TCL loss does not improve performance

Method	VOC20	5	TCL_v	TCL_{f}	\mathcal{L}_{area}	CL	VOC20		
A Baseline	53.2	D				V	61.1		
B + Decoder	52.3	Е	~		~		74.6		
C + TCL	77.4	F		V	~		76.0		
		С	V	~	~		77.4		
		G	~	V	~	V	75.6		
		Н	~	~			67.1		
(a) Baseline to TCL .			(b) TCL losses .						

THANK YOU!

Contact: junbum.cha@kakaobrain.com Code: <u>https://github.com/kakaobrain/tcl</u> Demo: <u>https://huggingface.co/spaces/khanrc/tcl</u>

Poster: WED-AM-279