Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes

Brandon Clark, Alec Kerrigan, Parth Kulkarni, Vicente Vivanco Cepeda, Dr. Mubarak Shah Paper Tag: THU-PM-246

Preview

- First Transformer Decoder based architecture
- Extract different features for each hierarchy and scene by using Geographic Queries
- Propose a new testing dataset with real world images and reduce geographic biases
- Improve location prediction on existing datasets by as much as 40%

Model

Decoder Queries (Hierarchy Queries)

- Each query is tasked to extract specific features
 - 7 Hierarchies * 16 Scenes = 112 Queries
- Dimension 1024
- Randomly initialized
- 0th channel is trained to be scene confidence

Hierarchy Independent Decoder

16 Scenes

• Queries extract image features via Cross-Attention

$$y^{SA} = MSA(LN(GQ^{k-1})) + GQ^{k-1}$$
$$y^{CA} = CA(LN(y^{SA}, LN(X)) + y^{SA},$$
$$GQ^{k} = FFN(LN(y^{CA})) + y^{CA}$$

Hierarchy Dependent Decoder

- Allows queries to specify which hierarchy they represent
- Self-Attention and FFNs are specific to each hierarchy

$$y^{SA} = MSA(LN(GQ_h^{k-1})) + GQ_h^{k-1}, \qquad (4)$$

$$y^{CA} = CA(LN(y^{SA}), LN(X)) + y^{SA},$$
 (5)

$$GQ_h^k = FFN_h(LN(y^{CA})) + y^{CA}$$
(6)

Scene Selection

- Average 0th Channel for each scene
- Highest value is the selected scene

Classification

- Selected queries go to their specified classification layers
- Predictions from each hierarchy are used to make a final prediction

Training Dataset

- MediaEval Places 2016 (MP16)
 - 4.7M Images with GPS from Yahoo and Flickr
 - Subset of YFCC100M
 - Uncurated dataset

Testing Datasets

- Im2GPS
 - ~300 Images
- Im2GPS3k
 - ~3k Images
- Curated sets of landmarks

Testing Datasets

- YFCC4k
 - ~4k Images
- YFCC26k
 - ~26k Images
- Uncurated
- Subset of YFCC100M

Google World Streets 15k (GWS15k)

- Pick a Country with probability based on surface area 1.
- Pick a town or city in that country 2.
- Pick a random coordinate within 5Km of the town/city 3.

Lara Venezuela

Results on Im2GPS

		Distance $(a_r \ [\%] \ @ \ km)$				
Dataset	Method	Street	City	Region	Country	Continent
		1 km	25 km	200 km	750 km	2500 km
	Human [21]	1. 1.	and the second s	3.8	13.9	39.3
	[L]kNN, $\sigma = 4$ [21]	14.4	33.3	47.7	61.6	73.4
	MvMF [5]	8.4	32.6	39.4	57.2	80.2
	PlaNet [22]	8.4	24.5	37.6	53.6	71.3
Im2GPS	CPlaNet [15]	16.5	37.1	46.4	62.0	78.5
[4]	ISNs (M, f, S ₃) [11]	16.5	42.2	51.9	66.2	81.0
	ISNs (M, f^*, S_3) [11]	16.9	43.0	51.9	66.7	80.2
	Translocator	19.9	48.1	64.6	75.6	86.7
	Ours	22.1	50.2	69.0	80.0	89.1

Results on Im2GPS3k

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street	City	Region	Country	Continent	
		1 km	25 km	200 km	750 km	2500 km	
Im2GPS 3k [21]	[L]kNN, $\sigma = 4$ [21]	7.2	19.4	26.9	38.9	55.9	
	PlaNet [†] [22]	8.5	24.8	34.3	48.4	64.6	
	CPlaNet [15]	10.2	26.5	34.6	48.6	64.6	
	ISNs (M, f, S ₃) [11]	10.1	27.2	36.2	49.3	65.6	
	ISNs (M, f^*, S_3) [11]	10.5	28.0	36.6	49.7	66.0	
	Translocator	11.8	31.1	46.7	58.9	80.1	
	Ours	12.8	33.5	45.9	61.0	76.1	

Results on YFCC4k

		Distance $(a_r \ [\%] @ \text{km})$				
Dataset	Method	Street	City	Region	Country	Continent
		1 km	25 km	200 km	$750~{ m km}$	2500 km
	[L]kNN, $\sigma = 4$ [21]	2.3	5.7	11.0	23.5	42.0
	PlaNet [†] [22]	5.6	14.3	22.2	36.4	55.8
	CPlaNet [15]	7.9	14.8	21.9	36.4	55.5
YFCC	ISNs (M, f, S ₃) [‡] [11]	6.5	16.2	23.8	37.4	55.0
4k	ISNs $(M, f^*, S_3)^{\ddagger}$ [11]	6.7	16.5	24.2	37.5	54.9
[21]	Translocator	8.4	18.6	27.0	41.1	60.4
	Ours	10.3	24.4	33.9	50.0	68.7

Results on YFCC26k

		Distance $(a_r \ [\%] \ @ \ km)$				
Dataset	Method	Street	City	Region	Country	Continent
		1 km	25 km	200 km	750 km	2500 km
YFCC 26 k [18]	PlaNet [‡] [22]	4.4	11.0	16.9	28.5	47.7
	ISNs (M, f, S ₃) [‡] [11]	5.3	12.1	18.8	31.8	50.6
	ISNs $(M, f^*, S_3)^{\ddagger}$ [11]	5.3	12.3	19.0	31.9	50.7
	Translocator	7.2	17.8	28.0	41.3	60.6
	Ours	10.1	23.9	34.1	49.6	69.0

Results on GWS15k

		Distance $(a_r \ [\%] \ @ \ km)$				
Dataset	Method	Street	City	Region	Country	Continent
		1 km	25 km	200 km	$750~{ m km}$	2500 km
GWS	Translocator*	0.5	1.1	8.0	25.5	48.3
$15\mathbf{k}$	Ours	0.7	1.5	8.7	26.9	50.5

Qualitative Results Im2GPS3k

Original Image

Conclusion

- Extracting features unique to each geographic hierarchy is important for geo-localization
- Our model shows significant quantitative improvements and our qualitative results show the model works as intended
- Our new testing dataset solves the limitations of other test sets, while also showing the limitations of the problem
- Code is available at https://github.com/AHKerrigan/GeoGuessNet

References

- Shraman Pramanick, Ewa M Nowara, Joshua Gleason, Carlos D Castillo, and Rama Chellappa. Where in the world is this image? transformer-based geo-localization in the wild. arXiv preprint arXiv:2204.13861, 2022. 1, 2, 3, 7, 8
- Nam Vo, Nathan Jacobs, and James Hays. Revisiting im2gps in the deep learning era. In Proceedings of the IEEE international conference on computer vision, pages 2621–2630, 2017. 1, 2, 3, 6, 7, 8
- Eric Muller-Budack, Kader Pustu-Iren, and Ralph Ewerth. Geolocation estimation of photos using a hierarchical model and scene classification. In Proceedings of the European Conference on Computer Vision (ECCV), pages 563–579, 2018. 1, 2, 3, 5, 6, 7