

Seeing Though the Glass: Neural 3D Reconstruction of Object Inside a Transparent Container

Jinguang Tong, Sundaram Muthu, Fahira Afzal Maken, Chuong Nguyen, Hongdong Li

CECC, The Australian National University, Canberra, Australia

Data61, CSIRO, Canberra, Australia

Poster: WED-PM-020

Code: https://github.com/hirotong/ReNeuS Paper: https://arxiv.org/abs/2303.13805

Overview

- New task: 3D reconstruction of the object inside a transparent container
- New method: ReNeuS

Motivation

Known geometry and pose of the

4

- transparent block.
- Homogeneous background and ambient lighting.

Method

Dataset

Synthetic Real

Experiment

Items	w/o box				w/ box			
	$\text{COLMAP}_{\xi=0}$	$\text{COLMAP}_{\xi=7}$	IDR	NeuS	$COLMAP_{\xi=0}$	$\text{COLMAP}_{\xi=7}$	NeuS	ReNeuS
beetle	1.10	3.67	0.76	2.42	15.48	17.55	27.40	1.40
box	4.09	5.28	0.51	3.76	35.38	14.15	15.43	2.29
butterfly	6.10	1.15	0.78	9.98	12.44	18.82	19.85	1.15
coral	4.93	11.23	1.68	2.11	142	17.32	21.18	8.78
coral2	1.81	2.75	1.66	1.42	21.38	29.25	20.75	2.44
dinosaur	2.22	1.18	0.82	2.80	28.15	36.33	15.46	1.47
goku	2.21	2.13	0.81	1.37	22.48	11.09	17.23	1.48
insect	2.56	0.96	0.62	5.89	45.78	35.88	21.71	1.10
insect2	1.34	1.15	0.76	4.07	15.34	18.65	22.11	1.30
lobster	13.27	12.20	17.17	12.97	40.52	26.72	14.61	11.08
shiba	2.33	17.73	2.24	2.22	24.30	13.92	20.30	3.38
statuette	0.85	0.92	0.87	0.79	61.74	22.16	25.44	2.26
vase	1.37	1.30	1.31	1.35	15.02	15.06	24.68	3.68
mean	3.22	4.47	2.28	3.72	35.86	20.83	20.59	3.19

Table 1. Qualitative evaluation on the synthetic dataset.

Experiment

SEEING THOUGH THE GLASS: NEURAL 3D RECONSTRUCTION OF OBJECT INSIDE A TRANSPARENT CONTAINER

Experiment

Reference

Mesh

9

Thank you!

