

Boosting Transductive Few-Shot Fine-tuning with Margin-based Uncertainty Weighting and Probability Regularization

Ran Tao, Hao Chen, Marios Savvides Carnegie Mellon University

WED-PM-324

Even with the same number of perclass training samples, there is a severely imbalanced categorical performance:

n

Imbalanced #per-class predictions.

Class

2. Imbalanced per-class accuracy.

Even with the same number of perclass training samples, there is a severely imbalanced categorical performance:

- 1. Imbalanced #per-class predictions.
- 2. Imbalanced per-class accuracy.

Transductive Fine-tuning[4]: $\theta^*(\mathcal{D}_s, \mathcal{D}_q) = \arg_{\theta} \min(\frac{1}{N_s} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_s} \mathcal{L}_s(\mathbf{x}, \mathbf{y}) + (\frac{1}{N_q} \sum_{(\mathbf{x}) \in \mathcal{D}_s} \mathcal{L}_s(\mathbf{y}) + (\frac{1}{N_q} \sum_{(\mathbf{x}) \in \mathcal{D}_s$

Add a loss for testing data

Carnegie Mellon Univer

Carnegie Mellon Univer

Method Overview

Without TF-MP, there is a severely imbalanced categorical performance even with the same number of perclass training samples.

Without TF-MP, there is a severely imbalanced categorical performance even with the same number of perclass training samples.

Without TF-MP, there is a severely imbalanced categorical performance even with the same number of perclass training samples.

Transductive Fine-tuning[4]: $heta^*(\mathcal{D}_s, \mathcal{D}_q) = rg_{ heta} \min(rac{1}{N_s} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_s} \mathcal{L}_s(\mathbf{x}, \mathbf{y}) + rac{1}{N_q} \sum_{(\mathbf{x}) \in \mathcal{D}_q} \mathcal{L}_q(\mathbf{x}))$ *TF-MP*: $\mathcal{L}_q(\mathbf{x}) = \lambda(\mathbf{p}_{\theta}(\mathbf{y}|\mathbf{x})) \times H(\mathbf{p}_{\theta}(\mathbf{y}|\mathbf{x}))$ Probability Regularization Regularize the imbalanced probability of testing data

Carnegie Mellon University

Performance of SOTA methods with a uniform testing set (10 per-class samples) using Meta-Dataset[1]:

- The Largest Difference (LD) between #per-class predictions is ideally 0 when each class is equally learned.
- LD is largely over 10 for SOTA methods.

This indicates: *the learned class marginal distribution is largely imbalanced and biased*.

Solving this issue is critical to maintaining the algorithms' robustness in different testing scenarios.

A few training samples

Transductive Fine-tuning with Margin-based Uncertainty Weighting and Probability Regularization (TF-MP):

$$\mathcal{L}_{q}(\mathbf{x}) = \lambda(\mathbf{p}_{\theta}(\mathbf{y}|\mathbf{x})) \times H(\mathbf{p}_{\theta}(\mathbf{y}|\mathbf{x}))$$
Margin-based uncertainty Probability
weighting Regularization
Carnegie Mellon University

Given the predicted probability p for each unlabeled testing data, Entropy-based uncertainty is generally used to assign loss weights:

$$e(\mathbf{p}) = -\frac{\sum_{i}^{C} (p_i \log p_i)}{\log C}$$

Larger uncertainty refers to smaller loss weight:

$$\lambda(\mathbf{p}) = 1 - e(\mathbf{p})$$

where \mathbf{p} is the abbreviation for $\mathbf{p}_{\theta}(\mathbf{y}|\mathbf{x})$

$$\sum_{i=1}^{c} p_i = 1, \mathbf{p} = [p_1, p_2, ..., p_c]$$

 $C\,$: the number of classes.

We emphasize the importance of the margin between the maximum and second maximum probability Δp in uncertainty computation.

The entropy uncertainty cannot reflect the margin information.

We emphasize the importance of the margin between the maximum and second maximum probability Δp in uncertainty computation.

Margin-based Uncertainty:

$$\begin{split} \hat{e}(\mathbf{p}) &= -\frac{1}{\log 2} (\hat{p}_{max} \log \hat{p}_{max} \\ &+ (\hat{p}_{max} - \hat{\Delta p}) \log (\hat{p}_{max} - \hat{\Delta p})] \end{split}$$

Margin-based Uncertainty Weighting

Carnegie Mellon Univ

- Margin-based Entropy (top-2) weighting outperforms Entropy weighting (All).
- The utilization of testing data with wrong predictions are largely compressed by Margin-based uncertainty weighting.

Probability Regularization

Carnegie Mellon

The loss objective for unlabeled testing data:

$$\mathcal{L}_q(\mathbf{x}) = \lambda(\mathbf{p}_{ heta}(\mathbf{y}|\mathbf{x})) imes H(\mathbf{p}_{ heta}(\mathbf{y}|\mathbf{x}))$$

$$H(\mathbf{p}_{ heta}(\mathbf{y}|\mathbf{x})) = -\hat{\mathbf{y}}\log(\mathbf{p}_{ heta}(\mathbf{y}|\mathbf{x}))$$

 $\mathbf{\hat{y}}$: Pseudo-label for unsupervised testing data

Regularize the imbalanced probability of testing data

Probability Regularization

The scale vector for each testing sample **x**:

$$\mathbf{v} = rac{U}{\hat{E}_{x \cup \mathcal{D}_s}[p_{ heta}(\mathbf{y}|\mathbf{x})]}$$
 $U \in \mathbb{R}^C$: uniform distribution

- The vector v quantifies the difference between uniform and the learned marginal distribution.
- The learned marginal is estimated using the set $x \cup D_s$

Probability Regularization

The scale vector for each testing sample **x**:

$$\mathbf{v} = rac{U}{\hat{E}_{x \cup \mathcal{D}_s}[p_{\theta}(\mathbf{y}|\mathbf{x})]}$$
 $U \in \mathbb{R}^C$: uniform distribution

• For each testing data, the predicted probability q is regularized by element-wisely multiplied using v as follows:

$$\tilde{\mathbf{q}} = \text{Normalize}(\mathbf{q} * \mathbf{v}) \quad \text{Normalize}(x_i) = \frac{x_i}{\sum_i x_i}$$

Experimental Results

Carnegie Mellon Un

We compare the state-of-the-art methods and benchmark on a published *Meta-Dataset*[1]

Method	Backbone	ILSVRC	Omni	Acraft	Birds	DTD	QDraw	Fungi	Flower	Sign	COCO
fo-P-M [32]	_	49.5 ± 1.1	60.0 ± 1.4	53.1 ± 1.0	68.8 ± 1.0	66.6 ± 0.8	49.0 ± 1.1	39.7 ± 1.1	85.3 ± 0.8	47.1 ± 1.1	41.0 ± 1.1
BOHB [26]	-	51.9 ± 1.1	67.6 ± 1.2	54.1 ± 0.9	70.7 ± 0.9	68.3 ± 0.8	50.3 ± 1.0	41.4 ± 1.1	87.3 ± 0.6	51.8 ± 1.0	48.0 ± 1.0
LR [31]	ResNet18	60.1	64.9	63.1	77.7	78.6	62.5	47.1	91.6	77.5	57.0
Meta-B [6]	ResNet18	59.2	69.1	54.1	77.3	76.0	57.3	45.4	89.6	66.2	55.7
CNAPS [1]	ResNet18	54.8	62.0	49.2	66.5	71.6	56.6	37.5	82.1	63.1	45.8
DCM-S [30]	ResNet34	64.6	81.8	79.7	85.0	77.9	69.3	49.3	93.2	88.7	57.7
CTX [8]	ResNet34	62.7 ± 1.0	82.2 ± 1.0	$\textbf{79.5} \pm \textbf{0.9}$	80.6 ± 0.9	75.6 ± 0.6	72.7 ± 0.8	51.6 ± 1.1	$\textbf{95.3}\pm0.4$	82.6 ± 0.8	59.9 ± 1.0
TSA [17]	ResNet34	63.7 ± 1.0	82.6 ± 1.1	80.13 ± 1.0	83.4 ± 0.8	$\textbf{79.6} \pm \textbf{0.7}$	71.0 ± 0.8	51.4 ± 1.2	94.1 ± 0.5	81.7 ± 1.0	61.7 ± 1.0
T-CNAPS [1]	ResNet18	54.1 ± 1.1	62.9 ± 1.3	48.4 ± 0.9	67.3 ± 0.9	72.5 ± 0.7	58.0 ± 1.0	37.7 ± 1.1	82.8 ± 0.8	61.8 ± 1.1	45.8 ± 1.0
T-F [7]	WRN-28	60.5	82.0	72.4	82.1	80.5	57.4	47.7	92.0	64.4	42.9
TF-MP	ResNet18	62.2 ± 1.1	83.8 ± 1.1	70.9 ± 0.9	81.3 ± 0.8	$\textbf{79.2} \pm \textbf{0.6}$	70.5 ± 0.6	51.2 ± 1.0	93.3 ± 0.4	78.2 ± 1.0	$\textbf{62.5}\pm0.9$
TF-MP	ResNet34	$\textbf{66.4} \pm 1.0$	87.5 ± 0.8	$\textbf{80.0}\pm0.9$	87.4 ± 0.6	$\textbf{81.9}\pm0.6$	71.9 ± 0.4	$\textbf{54.9}\pm0.9$	$94.8 {\pm}~0.4$	$\textbf{89.2}\pm0.9$	61.5 ± 0.9

•TF-MP achieves SOTA performance over transductive settings in Meta-Dataset.

•TF-MP is effective with different scales of models and datasets from different domains

Experimental Results

Carnegie Mellon Univ

b)TF-MP effectively reduces the imbalance in per-class predictions during fine-tuning for various datasets.

c)TF-MP boosts performance over the different number of few-shot settings.

Thank you!

Carnegie Mellon Uni

[1] Triantafillou, Eleni, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin et al. "Meta-dataset: A dataset of datasets for learning to learn from few examples." arXiv preprint arXiv:1903.03096(2019).

[2] Iscen, Ahmet, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. "Label propagation for deep semi-supervised learning." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5070-5079. 2019.

[3] Scheffer, Tobias, Christian Decomain, and Stefan Wrobel. "Active hidden markov models for information extraction." In International Symposium on Intelligent Data Analysis, pp. 309-318. Springer, Berlin, Heidelberg, 2001.

[4] Dhillon, Guneet S., Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. "A baseline for few-shot image classification." arXiv preprint arXiv:1909.02729 (2019).

[5] Tao, Ran, Han Zhang, Yutong Zheng, and Marios Savvides. "Powering Finetuning in Few-shot Learning: Domain-Agnostic Feature Adaptation with Rectified Class Prototypes." arXiv preprint arXiv:2204.03749 (2022).

[6] Li, Wei-Hong, Xialei Liu, and Hakan Bilen. "Cross-domain few-shot learning with task-specific adapters." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7161-7170. 2022.

[7] Li, Wei-Hong, Xialei Liu, and Hakan Bilen. "Universal representation learning from multiple domains for few-shot classification." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9526-9535. 2021.