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Method Overview
The Key Observation:

Even with the same number of per-
class training samples, there is a 
severely imbalanced categorical 
performance:
1. Imbalanced #per-class predictions.
2. Imbalanced per-class accuracy.
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Method Overview
The Key Observation:

Without TF-MP, there is a severely 
imbalanced categorical performance 
even with the same number of per-
class training samples.

Transductive Fine-tuning[4]:

TF-MP:



The Observation on Low-shot Fine-tuning

Performance of SOTA methods with a 
uniform testing set (10 per-class samples) 
using Meta-Dataset[1]:

● The Largest Difference (LD) 
between #per-class predictions is 
ideally 0 when each class is equally 
learned.

● LD is largely over 10 for SOTA 
methods.



The Observation on Low-shot Fine-tuning

This indicates: the learned class 
marginal distribution is largely 
imbalanced and biased. 

Solving this issue is critical to 
maintaining the algorithms’ 
robustness in different testing 
scenarios.



Transductive Fine-tuning with Margin-based Uncertainty Weighting and 
Probability Regularization (TF-MP):

Transductive Low-shot Fine-tuning



Margin-based Uncertainty Weighting

Given the predicted probability p for each unlabeled testing data, Entropy-based 
uncertainty is generally used to assign loss weights:

Larger uncertainty refers to smaller loss weight:

: the number of classes.



Margin-based Uncertainty Weighting

The entropy uncertainty cannot reflect the margin information.

We emphasize the importance of the margin 
between the maximum and second 
maximum probability in uncertainty 
computation.



Margin-based Uncertainty Weighting

We emphasize the importance of the margin 
between the maximum and second 
maximum probability in uncertainty 
computation.

Margin-based Uncertainty:

Margin-based 
Entropy



Margin-based Uncertainty Weighting

● Margin-based Entropy (top-2) weighting outperforms Entropy weighting (All).
● The utilization of testing data with wrong predictions are largely compressed by Margin-based 

uncertainty weighting.



Probability Regularization

: Pseudo-label for unsupervised testing data

The loss objective for unlabeled testing data:



Probability Regularization

The scale vector for each testing sample x:

● The vector v quantifies the difference between uniform and the learned 
marginal distribution.

● The learned marginal is estimated using the set x∪D_s



Probability Regularization

The scale vector for each testing sample x:

● For each testing data, the predicted probability q is regularized by element-wisely 
multiplied using v as follows:



Experimental Results

•TF-MP achieves SOTA performance over transductive settings in Meta-Dataset.

•TF-MP is effective with different scales of models and datasets from different domains.

We compare the state-of-the-art methods and benchmark on a published Meta-
Dataset[1]



Experimental Results

b)TF-MP effectively reduces the imbalance in per-class predictions during fine-tuning for various 
datasets.
c)TF-MP boosts performance over the different number of few-shot settings.
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