

The Dark Side of Dynamic Routing Neural Networks: Towards Efficiency Backdoor Injection

Simin Chen¹. Hanlin Chen². Mirazul Haque¹. Cong Liu³. Wei Yang¹.

¹University of Texas at Dallas. ²Purdue University. ³University of California at Riverside

Deep Learning is Pervasive on Edge Computing

Robotics

Mobile Application

Not All Inputs Require the Same Computations

The real-time requirements of on-device DNN applications

Not all inputs require the same computations (The figure is taken from [1])

Dynamic Neural Networks [2]

[1] Shallow-Deep Networks: Understanding and Mitigating Network Overthinking (ICML 2020)[2] Dynamic Neural Networks: A Survey (TPAMI 2021)

Background and computer science

Dynamic Neural Networks (DyNNs) allocate different computational resources for different inputs.

Can we inject efficiency backdoors into DyNNs that only affect DyNNs' computational efficiency on triggered inputs, while keeping DyNNs' behavior in terms of accuracy and efficiency unchanged on benign inputs?

UT DALLAS

We summarize three properties of the efficiency-based backdoor attacks

a.Unnoticeable to users b.Effective to degrade model efficiency on triggered inputs c.Behave normally on benign inputs

$$\begin{aligned} \theta^* &= \operatorname*{argmax}_{\theta} \quad \mathbb{E}_{x \in \mathcal{D}}[\operatorname{FLOPs}(\mathcal{F}, \theta, x \oplus r)] \\ s.t. & ||r|| \leq \epsilon \\ \operatorname{Acc}(\mathcal{F}, \theta, x) \approx \operatorname{Acc}(\mathcal{F}, \hat{\theta}, x) \\ \operatorname{FLOPs}(\mathcal{F}, \theta, x) \approx \operatorname{FLOPs}(\mathcal{F}, \hat{\theta}, x) \end{aligned}$$

Design Overview

The uniform distribution is the optimal target distribution that will result in the DyNN model consuming the most computational resources among all distributions

1. Backdoor Injection Phase

Algorithm 1: Algorithm to inject backdoor. **Require:** A set of labeled training data \mathcal{D} ; A pre-defined adversarial budget ϵ ; A pre-defined poisoning ratio *p*; balance hyper-parameters λ_1, λ_2 ; 1: r = GenerateRandom()2: Load parameters θ from a clean model \mathcal{F} 3: for each epoch do Compute $Loss_{per}$ on (r, ϵ) based on Eq. 3 4: Compute $Loss_{uncertain}$ on (x, U) based on Eq. 4 5: $L = \lambda_1 \times Loss_{per} + \lambda_2 \times Loss_{uncertain}$ $r - = \frac{\partial L}{\partial r}$ 8: end for 9: for each epoch do Get batch (x, y) from \mathcal{D} 10: if RANDOM() $\leq p$ then 11: $x^* = x \oplus r$ 12: end if 13: Compute $Loss_1$ on (x, y) based on Eq. 5 14: Compute $Loss_2$ on (x^*, \mathcal{U}) based on Eq. 6 15: $L = \lambda_1 \times Loss_1 + \lambda_2 \times Loss_2$ 16: $\theta - = \frac{\partial L}{\partial \theta}$ 17: 18: end for 19: Return θ

Evaluation Computer Science

Datasets: CIFAR-10, and Tiny-ImageNet. **Backbone Networks**: VGG19, MobileNet, and ResNet5. **DyNN Training Algorithms**: IC-Training and ShallowDeep.

Effectiveness Evaluation:

(i) Computational complexity on triggered inputs and (ii) EEC Scores **Stealthiness Evaluation:**

(i)Symmetric Segment-Path Distance (SSPD) distance (ii) the Hausdorff distance

Evaluation (Effectiveness)

Table 1. Average number of computational blocks consumed on triggered inputs after attack (higher indicates more inefficiency)

			C10		TI				
Backbone	Percentage	BadNets	TrojanNN	EfficFrog	BadNets	TrojanNN	EfficFrog		
VGG19	5%	1.02	1.08	3.42	1.09	1.13	3.94		
	10%	1.02	1.06	3.92	1.09	1.13	4.12		
	15%	1.02	1.03	4.10	1.07	1.10	4.32		
MobileNet	5%	1.01	1.07	2.92	1.04	1.05	3.25		
	10%	1.01	1.04	3.51	1.04	1.08	3.56		
	15%	1.01	1.03	3.74	1.03	1.06	3.88		
ResNet56	5%	1.06	1.08	4.04	1.07	1.09	4.01		
	10%	1.04	1.09	4.39	1.06	1.08	4.21		
	15%	1.04	1.04	4.48	1.04	1.09	4.56		

Table 2. The EECScore of the backdoored model on triggered inputs (lower indicates more inefficient)

Backbone	Percentage	BadNets	C10 TrojanNN	EfficErog	TI BadNets TrajanNN EfficErog					
		Dauricis	IIojamiiii	Linci iog	Dauricis	Inojamitit	Emerrog			
	5%	0.93	0.93	0.55	0.92	0.92	0.50			
VGG19	10%	0.93	0.93	0.55	0.92	0.92	0.50			
	15%	0.93	0.93	0.56	0.92	0.92	0.51			
MobileNet	5%	0.91	0.91	0.68	0.91	0.91	0.53			
	10%	0.92	0.92	0.68	0.91	0.91	0.54			
	15%	0.92	0.92	0.68	0.91	0.91	0.54			
ResNet56	5%	0.92	0.92	0.55	0.92	0.92	0.49			
	10%	0.92	0.92	0.55	0.92	0.92	0.49			
	15%	0.92	0.92	0.55	0.92	0.92	0.49			

Table 3. The similarity score between the performance curve, the rate column is computed using the smaller score divided the larger score.

		SSPD			Hausdorff			SSPD			Hausdorff		
Backbone	Percentage	CC-BC	CC-BB	Rate	CC-BC	CC-BB	Rate	CC-BC	CC-BB	Rate	CC-BC	CC-BB	Rate
VGG19	5%	0.18	1.58	0.11	20.83	2.73	0.13	0.19	1.52	0.13	29.28	3.24	0.11
	10%	0.20	1.70	0.12	26.64	2.89	0.11	0.17	1.32	0.13	33.12	3.26	0.10
	15%	0.20	1.68	0.12	28.33	2.88	0.10	0.16	1.27	0.13	34.42	3.21	0.09
MobileNet	5%	0.20	1.35	0.15	21.30	2.59	0.12	0.22	1.48	0.15	28.15	2.93	0.10
	10%	0.23	1.57	0.14	28.71	2.90	0.10	0.22	1.52	0.15	33.85	3.14	0.09
	15%	0.22	1.57	0.14	31.26	2.99	0.10	0.23	1.59	0.15	35.61	3.23	0.09
	5%	0.07	0.54	0.12	12.01	1.40	0.12	0.15	1.13	0.13	19.10	2.25	0.12
ResNet56	10%	0.08	0.61	0.12	14.44	1.51	0.10	0.17	1.20	0.14	24.73	2.58	0.10
	15%	0.08	0.59	0.13	15.40	1.57	0.10	0.18	1.18	0.15	27.05	2.78	0.10

Evaluation (Stealthiness)

Figure 5. Efficiency and Accuracy degradation plot before and after EfficFrog launched

Conclusion NEERING AND COMPUTER SCIENCE

- We characterize the efficiency backdoor vulnerability in DyNN models
- We propose an attack algorithm to inject efficiency backdoors into DyNN models
- Evaluation results suggest the effectiveness of our proposed methods.

Thank You

