

Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression

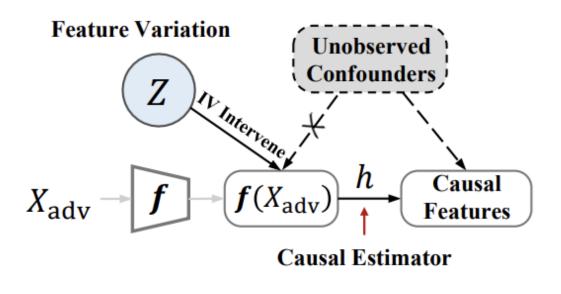
Junho Kim* Byung-Kwan Lee* Yong Man Ro

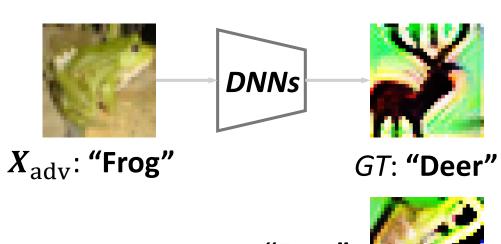
{arkimjh, leebk, ymro} @ kaist.ac.kr * Equal contribution

Image and Video Systems Lab,

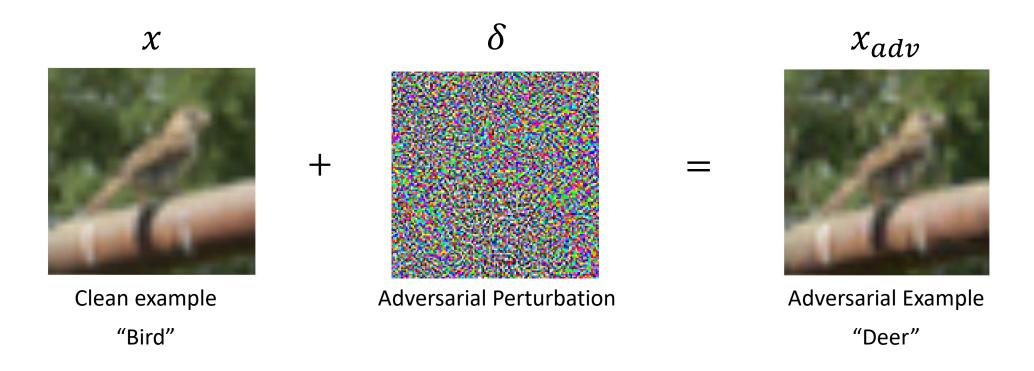
School of Electrical Engineering,

https://github.com/ByungKwanLee/Causal-Adversarial-Instruments


https://paperswithcode.com/paper/demystifying-causal-features-on-adversarial



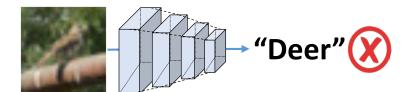
Hypothesis Model: "Frog"



Necessity of Adversarial Robustness

 Adversarial examples, generated by carefully crafted perturbation, have attracted considerable attention in research fields.

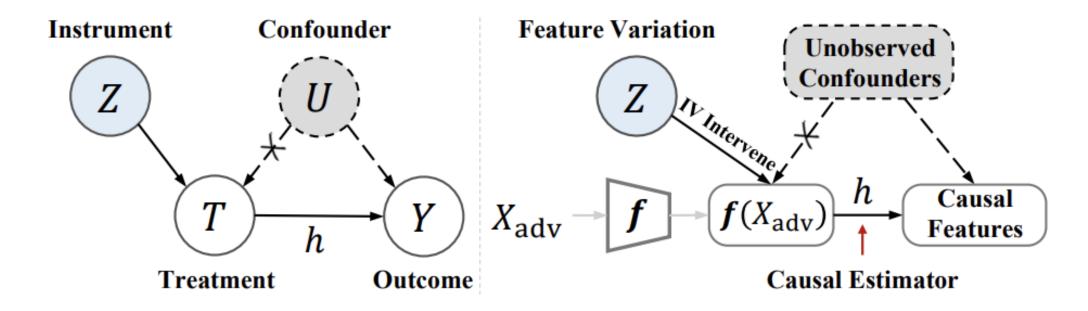
Potential Security Threats!



Necessity of Adversarial Robustness

But, it is still inexplicable the origin of adversarial examples, and it arouses arguments from various viewpoints, albeit comprehensive investigations.

- Excessive linearity in a hyperplane?
- Aberration of statistical fluctuations?
- Induced from high-freq information?
- Existence of non-robust features?


What is Inherent Causal Feature in Adversarial Examples?

Backdoor Path: $T \leftarrow U \rightarrow Y$

Causal Path: $Z \rightarrow T \rightarrow Y$

Conditional Moment Restriction (CMR)

$$\mathbb{E}_{\underline{T}}[\psi_T(h) \mid \underline{Z}] = \mathbf{0},$$
 Treatment Instrument

where a generalized residual function $\psi_T(h)$ is denoted by

$$\psi_T(h) = \underline{Y} - \underline{h}(T)$$
 Outcome Hypothesis Model

Here, CMR serves as a key of finding hypothesis model.

Adversarial Moment Restriction (AMR)

$$\mathbb{E}_T[\psi_T(h) \mid Z] = \mathbf{0}, \quad (Z = F_{\text{adv}} - F_{\text{natural}})$$

Adversarial Features

Feature Variations

where a generalized residual function $\psi_T(h)$ is denoted by

$$\psi_T(h) = \underline{Y} - \underline{h}(T)$$

Causal Features Neural Networks

Also, AMR serves as a key of finding neural networks outputting causal features.

Adversarial Moment Restriction (AMR)

$$\mathbb{E}_T[\psi_T(h) \mid Z] = \mathbf{0}, \quad (Z = F_{adv} - F_{natural})$$

Adversarial Features

Feature Variations

where a generalized residual function $\psi_T(h)$ is denoted by

$$\psi_T(h) = \underline{Y} - \underline{h}(T)$$

Causal Features

Neural Networks

However, conventional "CMR" did not work well in finding **a non-parametric hypothesis model** with high-dimensional treatment due to ill-posed estimates [7, 20, 45, 78]

Generalized Method of Moments (GMM) can help AMR!

$$\mathbb{E}_{Z,T}[\psi_T(h) \cdot g(Z)] = 0 \quad (\psi_T(h) = Y - h(T))$$

Hypothesis Model

Test Function

(Causal) Satisfying CMR despite given counterfactual treatment

Generating counterfactual treatment against hypothesis model (Causal)

(Adversarial) Generating causal features given too much noisy feature

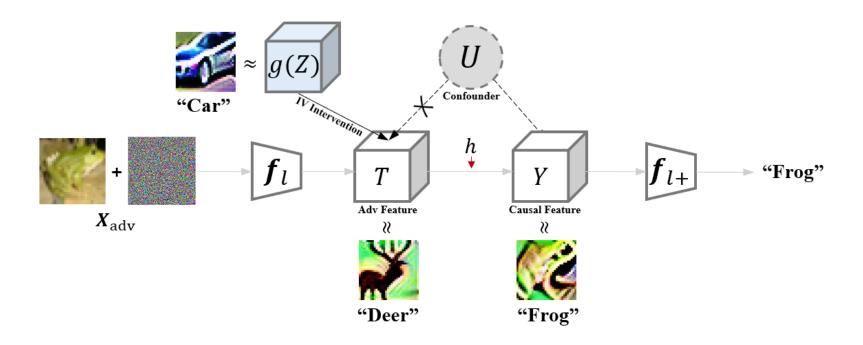
Interrupting generating causal features (Adversarial)

Implementation: Min-Max Optimization

 $\min_{h \in \mathcal{H}} \max_{g \in \mathcal{G}} \mathbb{E}_{Z,T}[\psi_T(h) \cdot g(Z)]$ (assuming the moment is semi-positive)

Causal Feature Generator

Counterfactual Feature Generator

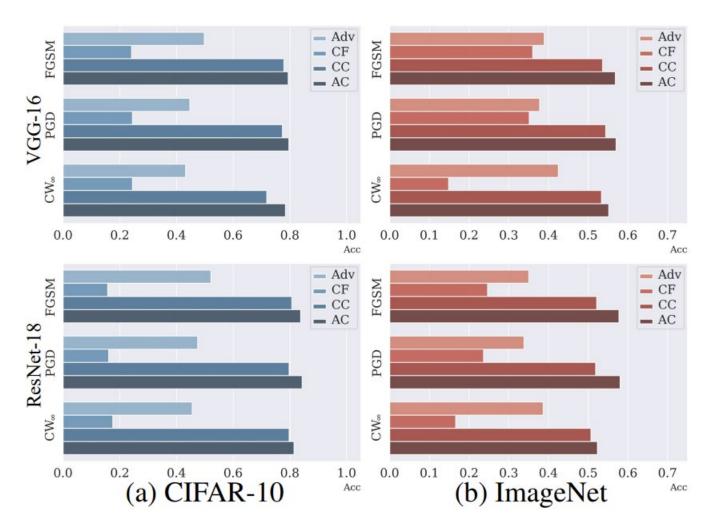


Proposed Method

$$\min \max_{h} \mathbb{E}[\{Y - h(\underbrace{z})\} \times \underbrace{z}_{\text{``Car''}}] \underset{g(Z)}{\longleftarrow} \min \max_{g(Z)} \mathbb{E}[\{\text{"frog"} - f_{l+}(\underbrace{z})\} \times f_{l+}(\underbrace{z})] \underset{h(g(Z))}{\longleftarrow})]$$

None of Labels for Causal Features

Then, how?



Analysis on Causal Features

Feature Combinations

- (i) Adversarial Feature (**Adv**) $F_{\text{adv}} = F_{\text{natural}} + Z$
- (ii) Counterfactual Feature (**CF**) $F_{\text{CF}} = F_{\text{natural}} + g(Z)$
- (iii) Counterfactual Causal Feature (**CC**) $F_{\text{CC}} = F_{\text{natural}} + (h \circ g)(Z)$
- (iv) Adversarial Causal Feature (**AC**) $F_{AC} = F_{\text{natural}} + h(Z)$

Analysis on Causal Features

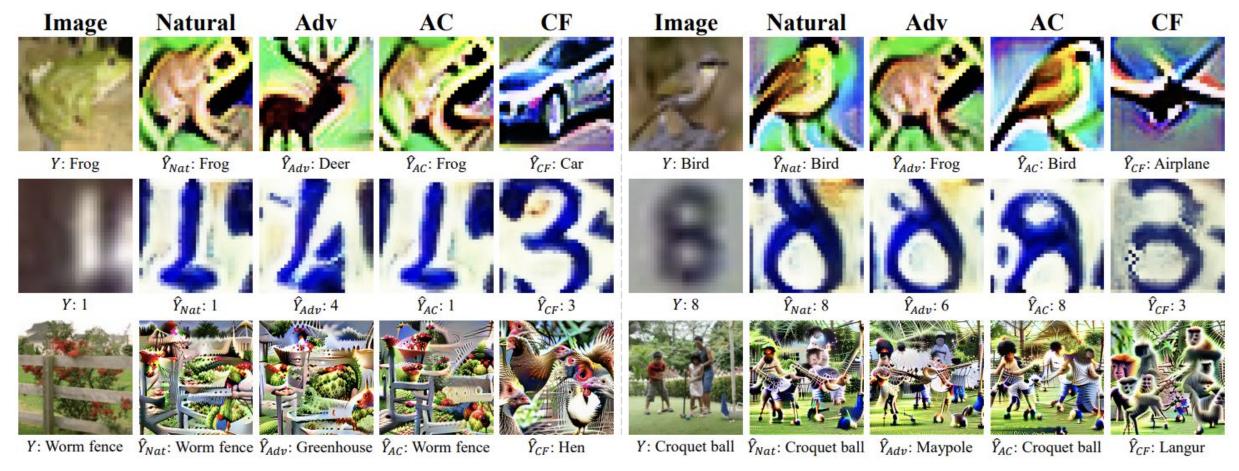


Fig 3. Comparison results of feature visualization for the defined feature variations.

We can now implant CAusal FEatures to boost adversarial robustness!

$$\min_{f \in \mathcal{F}} \mathbb{E}_{\mathcal{S}} \left[\max_{\|\epsilon\|_{\infty} \in \gamma} \mathcal{L}_{\text{Defense}} + \mathcal{D}_{\text{KL}} (f_{l+}(\hat{F}_{\text{AC}}) | f_{l+}(F_{\text{adv}})) \right]$$

Defense Baselines

- AT
- TRADES
- MART
- HELP
- AWP

Attack Baselines

- FGSM
- PGD
- CW
- AP / DLR
- AA

	Method	CIFAR-10							SVHN							Tiny-ImageNet						
		Natural	FGSM	PGD	CW_{∞}	AP	DLR	AA	Natural	FGSM	PGD	CW_{∞}	AP	DLR	AA	Natural	FGSM	PGD	CW_{∞}	AP	DLR	AA
VGG	ADV	78.5	49.8	44.8	42.6	43.2	42.9	40.7	91.9	64.8	52.1	48.9	48.0	48.5	45.2	53.2	25.3	21.5	21.0	20.2	20.8	19.6
	ADV_{CAFE}	78.4	52.2	47.9	44.1	46.4	44.5	42.7	91.5	67.0	55.3	50.0	51.3	49.6	46.1	52.6	26.0	22.8	22.1	21.8	22.0	21.0
	TRADES	79.5	50.4	45.7	43.2	44.4	42.9	41.8	91.9	66.4	53.6	49.1	49.1	47.7	45.2	52.8	25.9	22.5	21.9	21.5	21.8	20.7
	TRADES _{CAFE}	77.0	51.6	47.9	44.0	47.0	43.9	42.7	90.3	67.8	56.1	50.0	53.6	49.1	47.5	52.1	26.5	23.6	22.6	22.5	22.6	21.6
	MART	79.7	52.4	47.2	43.4	45.5	43.8	42.0	92.6	66.6	54.2	47.9	49.6	47.1	44.4	53.1	25.0	21.5	21.2	20.4	21.0	19.9
	MART _{CAFE}	78.3	54.2	49.7	43.9	48.1	44.5	42.7	91.3	67.6	57.3	49.5	54.2	48.3	46.4	53.0	25.6	22.3	21.6	21.3	21.5	20.5
	AWP	78.0	51.7	48.2	43.5 44.2	47.2	43.4	42.6	90.8 91.9	65.5	56.6	50.4	54.0	49.7	48.6 49.7	52.6	28.0	25.7	23.6	24.8	23.5	22.8
	AWP _{CAFE}	77.4	54.8	51.4		50.2	44.9	43.5		67.9	58.6	51.2	55.9	51.1		52.9	28.8	26.4	24.2	25.6	24.1	23.4
	HELP HELP _{CAFE}	77.4 75.6	51.8 54.4	48.3 51.4	43.9 44.6	47.3 50.4	43.9 44.8	42.9 43.7	91.2 91.5	65.8 67.3	56.6 58.5	50.9 51.6	53.9 56.2	50.2 51.4	48.8 50.0	53.0 52.6	28.3 29.4	25.9 27.1	23.9 24.7	25.1 26.4	23.8 24.4	23.1 23.9
ResNet	ADV	82.0	52.1	46.5	44.8	44.8	44.8	43.0	92.8	70.4	55.4	51.3	50.9	51.0	47.5	57.2	27.3	24.2	23.2	22.8	23.2	21.8
	ADV ADV _{CAFE}	82.6	55.9	50.7	47.6	49.0	47.7	46.2	92.5	73.6	58.9	53.8	54.9	52.6	49.8	56.3	28.6	25.7	24.7	24.4	24.6	23.5
	TRADES	83.0	55.0	49.8	47.5	48.3	47.3	46.1	93.2	72.8	57.7	52.6	53.0	51.5	48.9	56.5	28.4	25.3	24.4	24.2	24.3	23.2
	TRADES _{CAFE}	80.7	56.6	51.4	48.5	50.4	48.3	46.7	91.3	73.9	59.6	54.1	56.7	53.2	51.3	54.5	29.6	27.4	26.3	26.5	26.2	25.4
	MART	83.5	56.1	50.1	47.1	48.3	47.0	45.5	93.7	74.2	58.3	51.7	53.2	50.8	47.8	57.1	27.4	24.2	23.2	22.9	23.2	22.2
	$MART_{CAFE}$	82.1	57.3	51.9	48.1	50.2	48.0	46.2	92.2	74.9	61.0	53.4	57.3	51.8	49.7	55.9	28.6	25.9	24.6	24.7	24.5	23.5
	AWP	81.2	55.3	51.6	48.0	50.5	47.8	46.9	92.2	71.1	59.8	54.3	56.8	53.6	52.0	56.2	30.5	28.5	26.2	27.6	26.2	25.5
	AWP _{CAFE}	81.5	57.8	54.2	49.4	52.9	49.0	47.8	93.4	74.0	60.9	55.0	57.8	54.8	52.7	56.6	31.4	29.2	27,1	28.4	27.0	26.5
	HELP	80.5	55.8	52.1	48.4	51.1	48.5	47.4	92.6	72.0	59.8	54.4	56.6	53.9	52.0	56.1	31.0	28.6	26.3	27.7	26.3	25.7
	HELP _{CAFE}	80.6	57.8	54.5	49.4	53.1	49.5	48.5	92.9	73.9	61.3	55.3	58.8	54.6	52.8	55.4	32.0	29.7	27.4	29.2	27.8	27.3
	ADV	84.3 85.7	54.5	48.7	47.8	47.0	47.9	45.6	94.0	71.8	56.7	53.2	51.9	52.8	49.0	60.9	29.8	25.5	25.8	24.2	26.0	23.9 25.4
	ADV _{CAFE}		58.5	53.3	51.3	51.8	51.5	49.5	93.7	75.7	59.1	54.9	54.0	54.1	50.2	60.6	31.1	27.3	27.2	25.8	27.4	
WRN	TRADES TRADES _{CAFE}	86.3 83.7	57.1 58.6	52.1 54.5	50.8 52.0	50.6 53.2	50.7 52.0	49.0 50.1	93.8 92.4	74.0 75.6	58.1 61.0	53.9 55.7	53.0 58.0	53.4 58.0	49.9 53.0	60.8 60.3	30.5 31.7	26.4 28.2	26.7 28.3	25.0 27.0	26.8 28.5	24.6 26.5
	MART	86.5	58.5	52.6	50.0	50.7	49.9	48.0	94.2	75.0	58.0	53.1	52.8	52.8	48.9	60.7	29.9	25.6	25.9	24.0	25.5	23.6
	MART _{CAFE}	85.7	59.8	54.6	51.4	52.7	50.9	49.3	93.0	76.5	61.9	54.9	57.2	53.8	50.7	60.4	31.2	27.5	26.8	25.5	27.0	25.0 25.1
	AWP	83.7	58.0	54.7	51.3	53.7	51.2	50.1	93.2	73.4	60.8	55.9	57.5	55.5	53.6	61.9	35.5	32.8	31.0	31.6	31.1	29.6
	AWP _{CAFE}	84.6	60.6	56.9	52.4	55.5	52.3	51.1	94.2	76.9	62.7	57.5	59.2	57.1	54.6	61.4	36.6	34.2	32.3	33.2	32.5	30.8
	HELP	83.8	58.6	54.9	51.6	53.8	51.6	50.3	93.5	73.4	60.8	56.5	57.6	56.1	54.0	61.8	35.9	33.0	31.3	31.8	31.3	29.8
	HELP _{CAFE}	83.1	60.5	57.1	52.7	56.0	52.6	51.3	94.0	76.6	62.6	57.7	58.8	57.2	55.0	61.1	37.0	34.7	32.6	33.8	32.8	31.2

Table 2. Results of adversarial robustness using CAFE in existing defense methods

