

Imagen Editor & EditBench Advancing and Evaluating Text-Guide Image Inpainting

Su Wang*, Chitwan Saharia*, Ceslee Montgomery*,

Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini, Yasumasa Onoe, Sarah Laszlo, David J. Fleet, Radu Soricut,

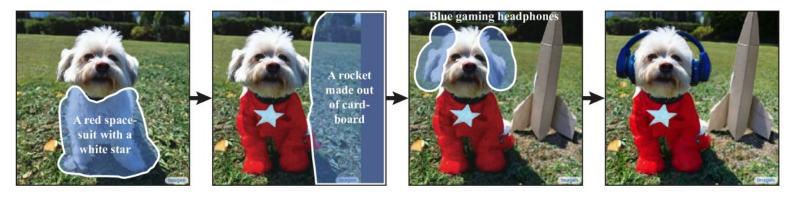
Jason Baldridge,

Mohammad Norouzi[†], Peter Anderson[†], William Chan[†]

Google Research, Brain Team

Text-Guided Image Inpainting

Task: Given an **image**, a **mask**ed area, and a **text** instruction \rightarrow Edit the masked area according to text while keeping the unmasked area intact.



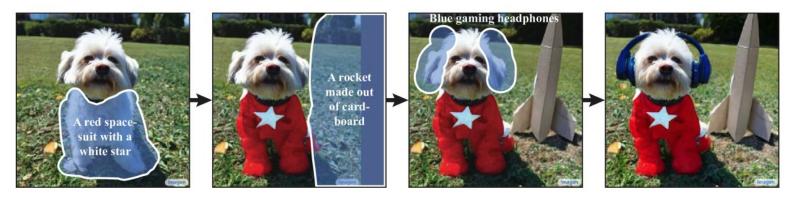
Use cases:

- Image editing: Tinkering a raw generated/retrieved image to fit the user's vision better.
- Data synthesis: Creating training/evaluation data for text-image modeling at scale with balanced content distribution (addressing the "long tail").

(Example: in <u>ROSIE</u>, we generated diverse environments to teach robots to learn navigation and manipulation better!)

Text-Guided Image Inpainting

Evaluation: When we say Model A performs better/worse than Model B, what do we mean?



Existing metrics are

- Reasonably reliable at model/dataset-level, while leaving rooms of improvement at instance-level (e.g. CLIP-based metrics, BLEU/METEOR/SPICE).
- Need to be made **more informative to answer the question "then how do we improve?"** (e.g. human judgments on "does this image match this text?").

In this work ...

We present a text-guided image inpainting model – **Imagen Editor** – that is steps ahead of the state-of-the-art competition.

... and to back up our claim, we propose a systematic and fine-grained evaluation benchmark – **EditBench** – to stack Imagen Editor against competition in comprehensive experimentation.

The benchmark is also an effort to push for more informative, semantically granular text-image alignment evaluation <u>beyond the common "wall of pretty images + hard-to-interpret auto/human evals"</u> <u>formula.</u>

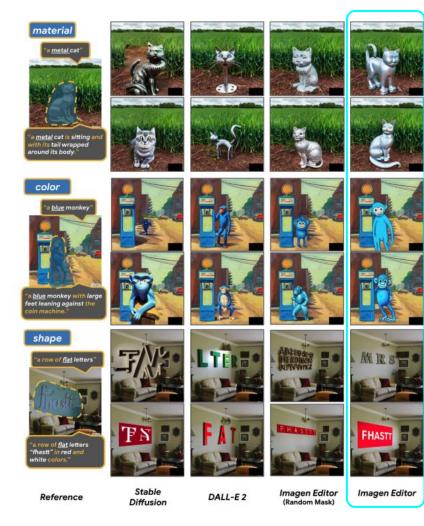


Imagen Editor

A cascaded diffusion model built on our text \rightarrow image generator **Imagen**.

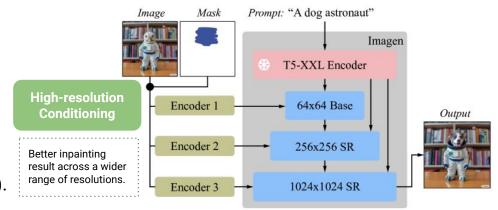
High-resolution Conditioning.

All cascading stages are conditioned on the full resolution image (the editing target).

Object-oriented Masking. Denoising mask created by powerful object detection model on-the-fly.

Classifier-Free Guidance. Biasing output towards more faithful text-image alignment.

NOTE: This is **in addition** to the standard training techniques (rather than replacing) such as random masking with boxes / strokes, uncropping, flipping, etc.



Google

EditBench

A collection of 240 rich annotated evaluation items (50:50 generated vs. natural image ratio) that features

- Fine-grained semantic categories along three dimensions
 - Attributes: {material, color, shape, size, count}
 - Objects: {common, rare, text rendering}
 - Scenes: {indoor, outdoor, realistic, painting}

• Text prompt types

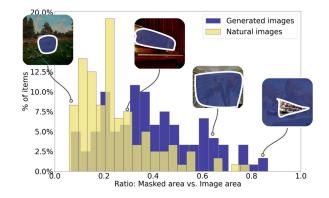
- Full-image: describes the entire image.
- Mask-simple: describes only the main object/attribute in the masked area.
- Mask-rich: Also only targets the masked area but more richly descriptive.
- Covers a wide range of mask sizes

Mask Simple "A metal cat"

Mask Rich "A metal cat is sitting and with its tail wrapped around its body"

Full Image

"A metal cat sitting in the middle of a farm field.



*

EditBench

Leveraging the rich annotation, we elicit human judgment from different angles in a fine-grained way.

Prompt:a flat-shaped cat hanging on the cabinets in a kitchen.

Does the image match the caption? O Yes

O No

Google

General matching question

Object Attribute □ letter "C" □ short □ letter "C" IS short

ostrich

□ body

🗌 tail

Object + Attribute Attribute □ orange colored □ ostrich IS orange colored □ brownish body IS brownish 🗌 orange □ tail IS orange

1. Which image is more realistic?

O Model 1

Model 2

PROMPTS

a metal cat sitting he middle of a farm

full

mask-simple

'a metal cat is

mask-rich

its body."

sitting and with its tail wrapped around

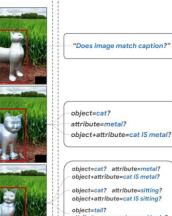
metal cat

EDITED IMAGES

2. Which image matches with the caption better?

O Model 1

O Model 2



attribute=wrapped around body? object+attribute =tail IS wrapped around body?

ANNOTATOR QUESTIONS

a platter of food placed in a triangle shape in a white plate.

Side-by-side comparison

Experimentation

We compare

- **Stable Diffusion** (v1.5, latest at the time of pub)
- DALL-E 2
- Imagen Editor baseline (no object masking)
- Imagen Editor

with

- Automatic Evaluation (standard method sa. CLIPScore)
- Human Evaluation (with EditBench)

Result – Automatic Evaluation

Experiment 1. Scoring directly

- CLIPScore: Text-Image embedding similarity.
- **CLIP R-Prec**: Retrieval precision of edited image for ground truth text from a set of 100.
- **NIMA**: Image quality assessment based on human perceptual quality and aesthetics.

	SD	DL2	IM _{RM}	IM	Ref.
CLIPScore ([†])					
T2I	29.7	29.1	29.6	31.5	31.0
I2I	74.9	76.1	75.8	76.6	-
T2I+I2I	52.3	52.6	53.1	53.6	-
CLIP-R-Prec (†)	96.5	95.3	95.0	98.6	99.3
NIMA (†)	4.44	4.33	4.56	4.63	4.89

Prompt	Image	T2I	I2I	T2I+I2I	R-Prec	Rand
Full	Full		58.6	66.8	53.3	50.0
Full	Crop	68.1	55.8	62.4	57.7	50.0
Mask-Simple	Full	73.8	53.1	63.2	72.0	50.0
Mask-Simple	Crop	76.0	55.3	66.4	71.0	50.0
Mask-Rich	Full	66.7	55.2	63.4	62.3	50.0
Mask-Rich	Crop	68.4	56.4	64.1	63.3	50.0

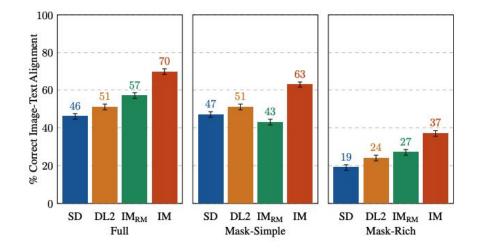
Experiment 2. Model selection

Percentage agreement between CLIPScore metrics and human judgments when picking the best image out of two model-produced images for the same prompt.

Experiment 1. Single-image evaluation

probes a model with three types of prompts:

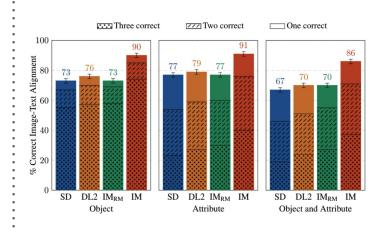
- **Full prompts** that describe the entire image we elicit binary answers to the question Does the image match the caption?.
- Mask-Simple prompts describe the masked area only and involve a single attribute-object pair – we check if the object and attribute are properly rendered, as well as whether they are bound to each other correctly (e.g. for red cat, a white cat on a red table would be an incorrect binding).
- Mask-Rich prompts extend mask-simple to 3 or more object-attribute pairs.

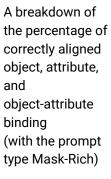


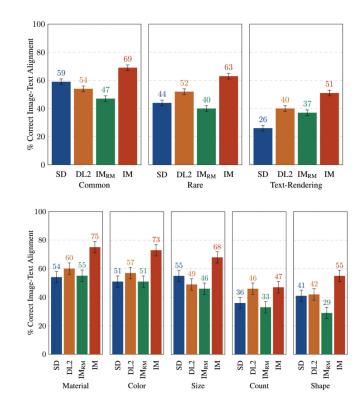
For mask-simple/rich prompts, text-image alignment is only counted as correct if the edited image correctly includes every attribute and object specified in the prompt, including the correct attribute binding (setting a very high bar for correctness)

Experiment 1. Single-image evaluation (con'td)

- Breakdown by object types (Top)
- Breakdown by attribute types (Bottom)



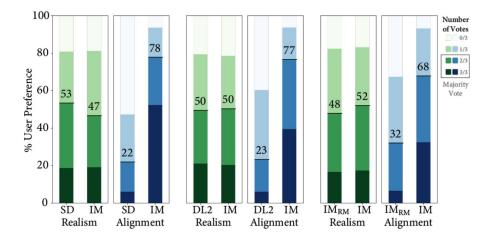




Experiment 2. Side-by-side evaluation

- 1. Which image is more realistic?
- O Model 1
- Model 2
- 2. Which image matches with the caption better?
- O Model 1

O Model 2



Experiment 3. Qualitative analysis

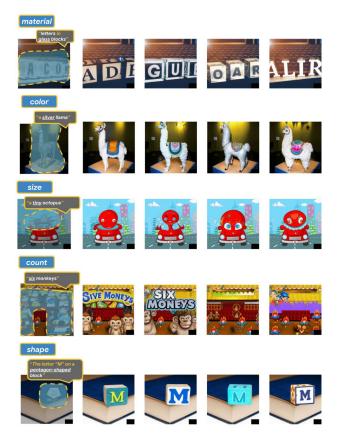
Object-oriented masking greatly improve models' ability to faithfully follow text instructions. Specifically, include objects/attributes mentioned correctly.

This is also quantified in our breakdown of the percentage of objects/attributes/bindings correctly rendered.

Experiment 3. Qualitative analysis (cont'd)

Some semantic categories are harder than others.

- First-order semantic properties such as material, color, size, etc. are easier.
- Less abstract properties such as color are easier than more abstract ones such as shape.
- Higher-order properties such as count are harder.



Summary of Findings

- **Imagen Editor** is a state-of-the-art text-guided image inpainting model, based on our automatic and human evaluation results.
- The human evaluation results produced with our **EditBench** benchmark are fine-grained, interpretable, and informative for the further development of text-guided image editors.
- Our findings illustrate a promising and functionally useful direction for the evaluation of text-image models. We hope it seeds and leads to more innovations in the space.

Thank you!

Google

Google