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Contributions
● Minimal problem: relative pose between 4 upright radial 

cameras from 7 point correspondences.
● Study of this minimal problem:

– 50 solutions
– decomposes into subproblems with 25, and 2 solutions

● Practical minimal solver for the problem
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Radial distortion
● Projections p by the pinhole camera and pd by the radially 

distorted camera lie on the same radial line l.

● Models many real cameras (fisheye, catadioptric, ...)

Image: Calibration-free Structure-from-Motion with Calibrated Radial Trifocal Tensors, V. Larsson, N. Zobernig, K. Taskin, M. Pollefeys
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● Projections p by the pinhole camera and pd by the radially 

distorted camera lie on the same radial line l.
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Radial distortion
● Projections p by the pinhole camera and pd by the radially 

distorted camera lie on the same radial line l.
● The constraint can be written as lT(RX+t)=0

● This is written in matrix form as l’T(R’X+t’)=0

( . )l1 l2l1

R11 R12R11 R13

R21 R22 R23

X1

X2

X3

+ t1

t2
= 0.
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● 4 cameras → Ri, ti

● Constraint:

● After eliminating X, we get [1]:

● Radial quadrifocal tensor [1]: 

     T ∈R2×2×2×2
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Internal Constraints
● Radial Quadrifocal tensor (RQT) T with shape 2×2×2×2

– Elements of T are functions of Ri, ti: it has 13 DoF
– space of all 2×2×2×2 tensors has 15 DoF up to scale

● Set of all RQTs: 13 dimensional variety 15D space
– Locally defined by 2 constraints
– Globally defined by 718 constraints of degree 12



  

Problem Symmetries
● Problem Symmetries:

– Revealed by Galois Group [1] of the problem.

 [1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan, 
Galois/monodromy groups for decomposing minimal problems in 3D 
reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.
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Problem Symmetries
● Problem Symmetries:

– Revealed by Galois Group [1] of the problem.
– The Galois Group can be computed using Monodromy.

● The problem has 3584 solutions.
● It decomposes into subproblems of 28, 2, 4, and 24 solutions.
● Effective reduction of the number of solutions.

– significant simplification of the problem

 [1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan, 
Galois/monodromy groups for decomposing minimal problems in 3D 
reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.
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● 3584 solutions in terms of Ri, ti

● Subproblems of 28, 2, 4, 24 
solutions

● Every instance has 28 solutions 
in terms of T

● Every T has 128 
decompositions to Ri, ti

● 40 solutions in terms of R, t

● Subproblems of 10 and 4 
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● Every instance has 10 solutions 
in terms of essential matrices E

● Every E has 4 decompositions 
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Upright minimal problem
● 4 cameras needed to get one constraint.
● 4 upright cameras have 7 DoF.

– 7 correspondences needed to estimate the RQT.
● The minimal problem has 50 complex solutions.

– It has subproblems with 25 and 2 solutions.
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Minimal Solvers
● Solved by Homotopy Continuation
● General case

– 28 homotopy paths
– Metric upgrade to get all solutions
– Runtime: 78 ms

● Upright case
– 25 homotopy paths
– Runtime: 18 ms



  

Results
● Comparison with Larsson et al. [1]
● Left: general quadruplets

[1] Calibration-free Structure-from-Motion with Calibrated Radial Trifocal Tensors, V. Larsson, N. Zobernig, K. Taskin, M. Pollefeys



  

Results
● Comparison with Larsson et al. [1]
● Left: general quadruplets
● Right: quadruplets selected by an expensive heuristic [1]

[1] Calibration-free Structure-from-Motion with Calibrated Radial Trifocal Tensors, V. Larsson, N. Zobernig, K. Taskin, M. Pollefeys



  

Result Kirchenge



  

Results (Eglise)



  

Results (Door)



  

THE END
Visit us at WED-AM-073
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