Four-view geometry with unknown radial distortion

Petr Hruby, Viktor Korotynskiy, Timothy Duff, Luke Oeding, Marc Pollefeys, Tomas Pajdla, Viktor Larsson

WED-AM-073

Motivation

- 3D reconstruction without modelling intrinsics

Motivation

- 3D reconstruction without modelling intrinsics
- No prior information about the cameras, except for their radial symmetry

Motivation

- 3D reconstruction without modelling intrinsics
- No prior information about the cameras, except for their radial symmetry

Motivation

- 3D reconstruction without modelling intrinsics
- No prior information about the cameras, except for their radial symmetry
- Works for pinhole cameras

Motivation

- 3D reconstruction without modelling intrinsics
- No prior information about the cameras, except for their radial symmetry
- Works for pinhole cameras, fisheye cameras

Motivation

- 3D reconstruction without modelling intrinsics
- No prior information about the cameras, except for their radial symmetry
- Works for pinhole cameras, fisheye cameras, catadioptric cameras, ...

Contributions

- Minimal problem: relative pose between 4 radial cameras from 13 point correspondences.

Contributions

- Minimal problem: relative pose between 4 radial cameras from 13 point correspondences.
- Study of this minimal problem:
- 3584 solutions
- decomposes into subproblems with $28,2,4,2,2,2$, and 2 solutions

Contributions

- Minimal problem: relative pose between 4 radial cameras from 13 point correspondences.
- Study of this minimal problem:
- 3584 solutions
- decomposes into subproblems with $28,2,4,2,2,2$, and 2 solutions
- Internal constraints on the radial quadrifocal tensor

Contributions

- Minimal problem: relative pose between 4 radial cameras from 13 point correspondences.
- Study of this minimal problem:
- 3584 solutions
- decomposes into subproblems with $28,2,4,2,2,2$, and 2 solutions
- Internal constraints on the radial quadrifocal tensor
- Practical minimal solver for the problem

Contributions

- Minimal problem: relative pose between 4 upright radial cameras from 7 point correspondences.

Contributions

- Minimal problem: relative pose between 4 upright radial cameras from 7 point correspondences.
- Study of this minimal problem:
- 50 solutions
- decomposes into subproblems with 25, and 2 solutions

Contributions

- Minimal problem: relative pose between 4 upright radial cameras from 7 point correspondences.
- Study of this minimal problem:
- 50 solutions
- decomposes into subproblems with 25 , and 2 solutions
- Practical minimal solver for the problem

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.

- Models many real cameras (fisheye, catadioptric, ...)

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.

$$
=\mathrm{p}_{\mathrm{d}} \times \mathrm{o}
$$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.

$$
\begin{aligned}
&= \mathrm{p}_{\mathrm{d}} \times \mathrm{o} \\
& \sim \mathrm{R} \mathbf{X}+\mathrm{t}
\end{aligned}
$$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.

$$
\begin{gathered}
=p_{\mathrm{d}} \times \mathrm{o} \\
\sim \mathrm{RX}+\mathrm{t} \\
=0
\end{gathered}
$$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

$$
\begin{aligned}
= & \mathrm{p}_{\mathrm{d}} \times \mathrm{o} \\
& \sim \mathrm{R} \mathbf{X}+\mathrm{t}
\end{aligned}
$$

$$
=0
$$

$(\mathrm{R} \mathbf{X}+\mathrm{t})=0$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .

$$
\begin{gathered}
=\mathrm{p}_{\mathrm{d}} \times \mathrm{o} \\
\sim \mathrm{R} \mathbf{X}+\mathrm{t} \\
=0 \\
(\mathrm{R} \mathbf{X}+\mathrm{t})=0 \\
\mathbf{X} \in \Pi()
\end{gathered}
$$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.
- The constraint can be written as ${ }^{T}(\mathrm{RX}+\mathrm{t})=0$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.
- The constraint can be written as $(\mathrm{RX}+\mathrm{t})=0$

Radial distortion

- Projections p by the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line $]$.
- The constraint can be written as $\mathrm{I}^{T 1}(\mathrm{RX}+\mathrm{t})=0$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1.
- The constraint can be written as ${ }^{11}(\mathrm{RX}+\mathrm{t})=0$

Radial distortion

- Projections py the pinhole camera and p_{d} by the radially distorted camera lie on the same radial line 1 .
- The constraint can be written as ${ }^{11}(\mathrm{RX}+\mathrm{t})=0$

- This is written in matrix form as $l^{9}\left(\mathrm{R}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}\right)=0$

Constraint from radial distortion

- 2 cameras $\rightarrow \mathbf{R}_{\mathrm{i},} \mathrm{t}_{\mathrm{i}}$

[1] SriRam Thirthala and Marc Pollefeys: Radial Multi-focal Tensors

Constraint from radial distortion

- 2 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}$, t_{i}
- Constraint:
$\exists \mathbf{X}: 1_{1}{ }^{\prime}\left(R_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=l_{2}{ }_{2}{ }^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}_{2}^{\prime}\right)=0$
[1] SriRam Thirthala and Marc Pollefeys: Radial Multi-focal Tensors

Constraint from radial distortion

- 2 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Constraint: $\exists \mathbf{X}: 1_{1}{ }^{\prime}\left(R_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=l_{2}{ }_{2}{ }^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}_{2}^{\prime}\right)=0$
- 2 planes always intersect! - NO CONSTRAINT!
[1] SriRam Thirthala and Marc Pollefeys: Radial Multi-focal Tensors

Constraint from radial distortion

- 3 cameras $\rightarrow \mathbf{R}_{\mathrm{i},} \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{gathered}
\exists \mathbf{X}: \mathrm{l}_{1}^{1}{ }_{1}^{\mathrm{T}}\left(\mathrm{R}_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=\mathrm{l}_{2}{ }_{2}^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}{ }_{2}\right)= \\
\mathrm{l}_{3}{ }_{3}^{\mathrm{T}}\left(\mathrm{R}_{3}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}{ }_{3}\right)=0
\end{gathered}
$$

Constraint from radial distortion

- 3 cameras $\rightarrow \mathbf{R}_{\mathrm{i},} \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{aligned}
& \exists \mathbf{X}: \mathrm{l}_{1}{ }_{1}^{\mathrm{T}}{ }^{\mathrm{T}}\left(\mathrm{R}_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=\mathrm{l}_{2}^{\prime}{ }_{2}^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}\right)= \\
& \mathrm{l}_{3}^{\mathrm{T}}\left(\mathrm{R}_{3}^{\prime} \mathbf{X}+\mathrm{t}_{3}^{\prime}\right)=0
\end{aligned}
$$

- 3 planes always intersect? - NO CONSTRANT!

Constraint from radial distortion

- 4 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{aligned}
\left.\exists \mathbf{X}: \mathrm{l}_{1}{ }_{1}^{\mathrm{T}}\left(\mathrm{R}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}{ }_{1}\right)=\mathrm{l}_{2}{ }_{2}^{\mathrm{T}}{ }^{(} \mathrm{R}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}{ }_{2}\right)= \\
\mathrm{I}^{2}{ }_{3}^{\mathrm{T}}\left(\mathrm{R}^{\prime}{ }_{3} \mathbf{X}+\mathrm{t}^{\prime}{ }_{3}\right)=\mathrm{l}^{2}{ }_{4}^{\mathrm{T}}\left(\mathrm{R}^{\prime}{ }_{4} \mathbf{X}+\mathrm{t}^{\prime}{ }_{4}\right)=
\end{aligned}
$$

Constraint from radial distortion

- 4 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{aligned}
& \exists \mathbf{X}: \mathrm{l}_{1}^{\prime}{ }^{\mathrm{T}}\left(\mathrm{R}_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=l_{2}^{1}{ }_{2}^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X} \mathbf{X}+\mathrm{t}_{2}^{\prime}\right)= \\
& \mathrm{l}_{3}^{\mathrm{T}} \mathrm{R}^{\mathrm{T}}\left(\mathrm{R}_{3}^{\prime} \mathbf{X}+\mathrm{t}_{3}^{\prime}\right)==_{4}^{1}{ }_{4}^{\mathrm{T}}\left(\mathrm{R}_{4}^{\prime} \mathbf{X}+\mathrm{t}_{4}^{\prime}\right)=0
\end{aligned}
$$

- 4 planes generically don't intersect.

Constraint from radial distortion

- 4 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{aligned}
& \exists \mathbf{X}: \mathrm{l}_{1}^{\mathrm{P}^{\mathrm{T}}}\left(\mathrm{R}_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=\mathrm{l}_{2}^{\prime}{ }^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}\right)= \\
& 1_{3}^{1{ }^{\mathrm{T}}\left(\mathrm{R}_{3}^{\prime} \mathbf{X}+\mathrm{t}_{3}^{\prime}\right)=\mathrm{l}_{4}{ }_{4}^{\mathrm{T}}\left(\mathrm{R}_{4}^{\prime} \mathbf{X}+\mathrm{t}_{4}^{\prime}\right)=0}
\end{aligned}
$$

- After eliminating \mathbf{X}, we get [1]:

Constraint from radial distortion

- 4 cameras $\rightarrow \mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Constraint:

$$
\begin{aligned}
& \exists \mathbf{X}: \mathrm{l}_{1}^{\mathrm{P}^{\mathrm{T}}}\left(\mathrm{R}_{1}^{\prime} \mathbf{X}+\mathrm{t}_{1}^{\prime}\right)=\mathrm{l}_{2}^{\prime}{ }^{\mathrm{T}}\left(\mathrm{R}_{2}^{\prime} \mathbf{X}+\mathrm{t}^{\prime}\right)= \\
& 1_{3}^{1{ }^{\mathrm{T}}\left(\mathrm{R}_{3}^{\prime} \mathbf{X}+\mathrm{t}_{3}^{\prime}\right)=\mathrm{l}_{4}{ }_{4}^{\mathrm{T}}\left(\mathrm{R}_{4}^{\prime} \mathbf{X}+\mathrm{t}_{4}^{\prime}\right)=0}
\end{aligned}
$$

- After eliminating \mathbf{X}, we get [1]:
- Radial quadrifocal tensor [1]:

$$
\mathbf{T} \in \mathbb{R}^{2 \times 2 \times 2 \times 2}
$$

General Minimal Problem

- 4 cameras needed to get one constraint.

General Minimal Problem

- 4 cameras needed to get one constraint.
- 4 uncalibrated cameras have 13 DoF.

General Minimal Problem

- 4 cameras needed to get one constraint.
- 4 uncalibrated cameras have 13 DoF.
- 4 calibrated cameras also have 13 DoF.

General Minimal Problem

- 4 cameras needed to get one constraint.
- 4 uncalibrated cameras have 13 DoF.
- 4 calibrated cameras also have 13 DoF.
- 13 correspondences needed to estimate the pose.

General Minimal Problem

- 4 cameras needed to get one constraint.
- 4 uncalibrated cameras have 13 DoF.
- 4 calibrated cameras also have 13 DoF.
- 13 correspondences needed to estimate the pose.
- The minimal problem has 3584 complex solutions.

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$
- Elements of T are functions of $\mathbf{R}_{\mathbf{i}}$, t_{i} : it has 13 DoF

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$
- Elements of \mathbf{T} are functions of $\mathbf{R}_{i}, \mathrm{t}_{\mathrm{i}}$: it has 13 DoF
- space of all $2 \times 2 \times 2 \times 2$ tensors has 15 DoF up to scale

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$
- Elements of \mathbf{T} are functions of $\mathbf{R}_{i}, \mathrm{t}_{\mathrm{i}}$: it has 13 DoF
- space of all $2 \times 2 \times 2 \times 2$ tensors has 15 DoF up to scale
- Set of all RQTs: 13 dimensional variety 15D space

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$
- Elements of \mathbf{T} are functions of $\mathbf{R}_{i}, \mathrm{t}_{\mathrm{i}}$: it has 13 DoF
- space of all $2 \times 2 \times 2 \times 2$ tensors has 15 DoF up to scale
- Set of all RQTs: 13 dimensional variety 15D space
- Locally defined by 2 constraints

Internal Constraints

- Radial Quadrifocal tensor (RQT) T with shape $2 \times 2 \times 2 \times 2$
- Elements of \mathbf{T} are functions of $\mathbf{R}_{i}, \mathrm{t}_{\mathrm{i}}$: it has 13 DoF
- space of all $2 \times 2 \times 2 \times 2$ tensors has 15 DoF up to scale
- Set of all RQTs: 13 dimensional variety 15D space
- Locally defined by 2 constraints
- Globally defined by 718 constraints of degree 12

Problem Symmetries

- Problem Symmetries:
- Revealed by Galois Group [1] of the problem.

[1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan,
Galois/monodromy groups for decomposing minimal problems in 3D reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.

Problem Symmetries

- Problem Symmetries:
- Revealed by Galois Group [1] of the problem.
- The Galois Group can be computed using Monodromy.

[1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan,
Galois/monodromy groups for decomposing minimal problems in 3D reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.

Problem Symmetries

- Problem Symmetries:
- Revealed by Galois Group [1] of the problem.
- The Galois Group can be computed using Monodromy.
- The problem has 3584 solutions.
- It decomposes into subproblems of $28,2,4$, and 2^{4} solutions.

[1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan,
Galois/monodromy groups for decomposing minimal problems in 3D reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.

Problem Symmetries

- Problem Symmetries:
- Revealed by Galois Group [1] of the problem.
- The Galois Group can be computed using Monodromy.
- The problem has 3584 solutions.
- It decomposes into subproblems of $28,2,4$, and 2^{4} solutions.
- Effective reduction of the number of solutions.
- significant simplification of the problem

[1] T. Duff, V. Korotynskiy, T. Pajdla, and M. H. Regan,
Galois/monodromy groups for decomposing minimal problems in 3D, reconstruction, SIAM Journal on Applied Algebra and Geometry, 2022.

Problem Symmetries

2 Pinhole Cameras, 5 Points

4 Radial Cameras, 13 Points

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices E

Problem Symmetries

2 Pinhole Cameras, 5 Points
4 Radial Cameras, 13 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices \mathbf{E}
- Every E has 4 decompositions to R, t

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices \mathbf{E}
- Every E has 4 decompositions to R, t

4 Radial Cameras, 13 Points

- 3584 solutions in terms of $\mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices \mathbf{E}
- Every E has 4 decompositions to R, t

4 Radial Cameras, 13 Points

- 3584 solutions in terms of $\mathbf{R}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$
- Subproblems of 28, 2, 4, 24 solutions

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices \mathbf{E}
- Every E has 4 decompositions to R, t

4 Radial Cameras, 13 Points

- 3584 solutions in terms of $\mathbf{R}_{\mathbf{i}}, \mathrm{t}_{\mathrm{i}}$
- Subproblems of $28,2,4,24$ solutions
- Every instance has 28 solutions in terms of \mathbf{T}

Problem Symmetries

2 Pinhole Cameras, 5 Points

- 40 solutions in terms of \mathbf{R}, \mathbf{t}
- Subproblems of 10 and 4 solutions
- Every instance has 10 solutions in terms of essential matrices \mathbf{E}
- Every E has 4 decompositions to R, t

4 Radial Cameras, 13 Points

- 3584 solutions in terms of $\mathbf{R}_{\mathbf{i}}, \mathrm{t}_{\mathrm{i}}$
- Subproblems of $28,2,4,24$ solutions
- Every instance has 28 solutions in terms of \mathbf{T}
- Every T has 128 decompositions to $\mathbf{R}_{\mathrm{i}}, \mathbf{t}_{\mathbf{i}}$

Upright minimal problem

Upright minimal problem

- 4 cameras needed to get one constraint.

Upright minimal problem

- 4 cameras needed to get one constraint.
- 4 upright cameras have 7 DoF.

Upright minimal problem

- 4 cameras needed to get one constraint.
- 4 upright cameras have 7 DoF.
- 7 correspondences needed to estimate the RQT.

Upright minimal problem

- 4 cameras needed to get one constraint.
- 4 upright cameras have 7 DoF.
- 7 correspondences needed to estimate the RQT.
- The minimal problem has 50 complex solutions.
- It has subproblems with 25 and 2 solutions.

Minimal Solvers

- Solved by Homotopy Continuation

Minimal Solvers

- Solved by Homotopy Continuation
- General case
- Upright case

Minimal Solvers

- Solved by Homotopy Continuation
- General case
- 28 homotopy paths
- Metric upgrade to get all solutions
- Runtime: 78 ms
- Upright case

Minimal Solvers

- Solved by Homotopy Continuation
- General case
- 28 homotopy paths
- Metric upgrade to get all solutions

- Runtime: 78 ms
- Upright case
- 25 homotopy paths
- Runtime: 18 ms

Results

- Comparison with Larsson et al. [1] - Left: general quadruplets

Results

- Comparison with Larsson et al. [1]
- Left: general quadruplets
- Right: quadruplets selected by an expensive heuristic [1]
C Trifocal+Mixed [1]

Result Kirchenge

Results (Eglise)

Results (Door)

THE END

Visit us at WED-AM-073

