Finetune Like You Pretrain

Improving finetuning of zero-shot vision models

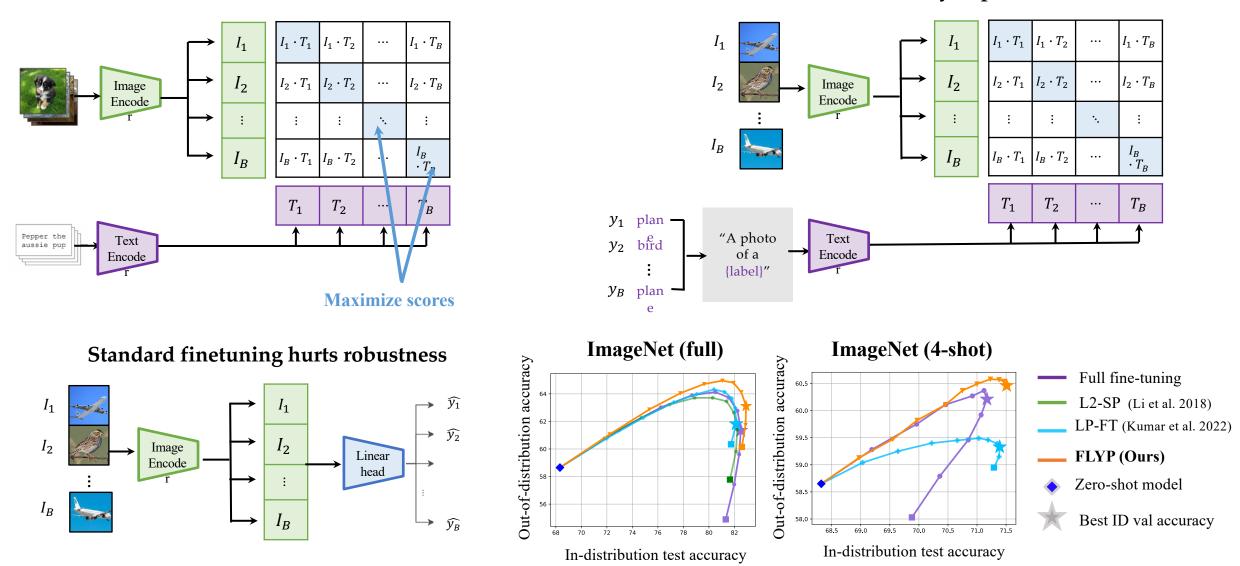
CVPR Poster Session : THU-AM-272

Ananya Kumar

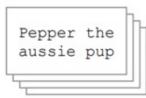
Sankalp Garg

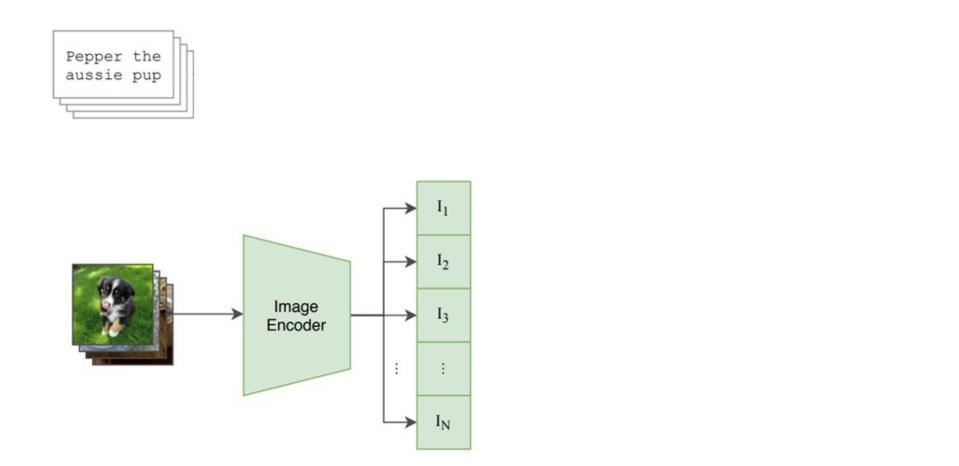
Zico Kolter

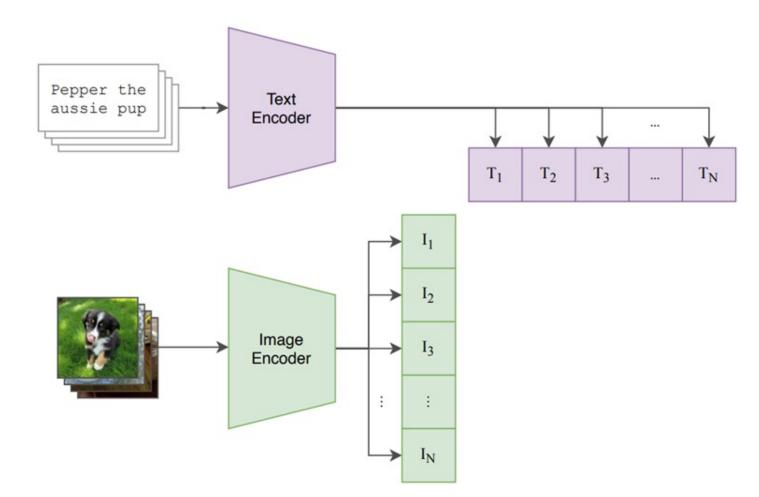
Contrastive pretraining of CLIP

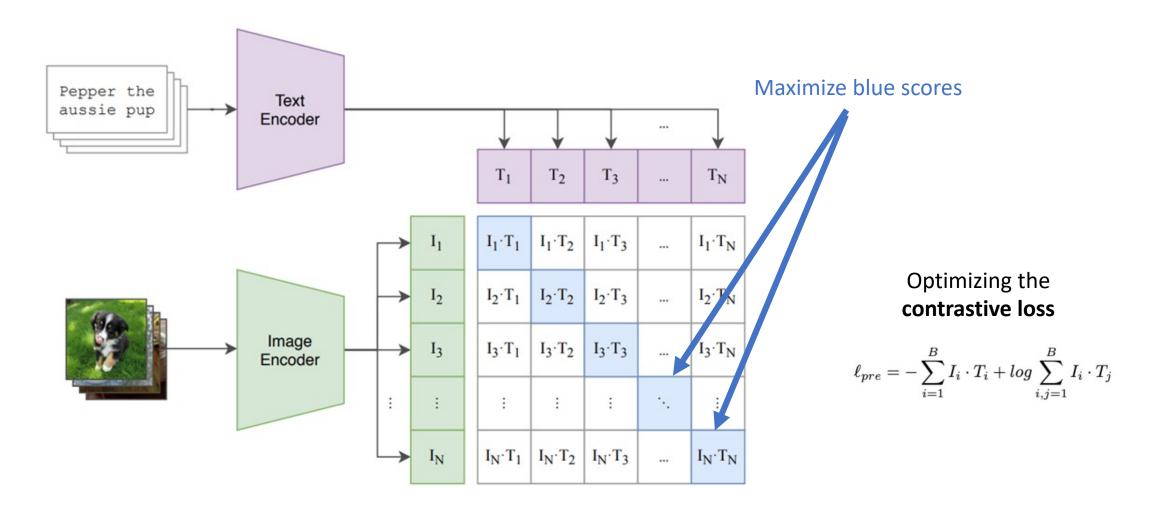


OURS : Finetune like you pretrain (FLYP)



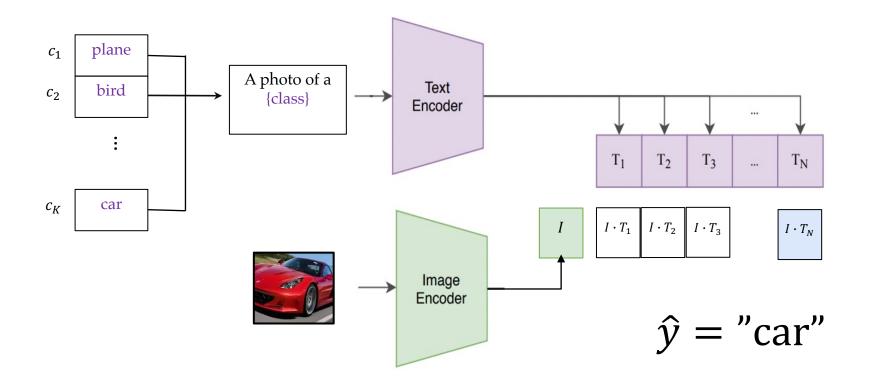






Zero-shot prediction

• Surprisingly amazing zero-shot classification performance!

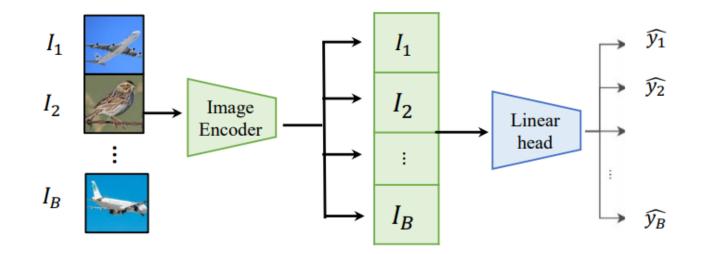


Zeroshot Performance

• Performs quite well.

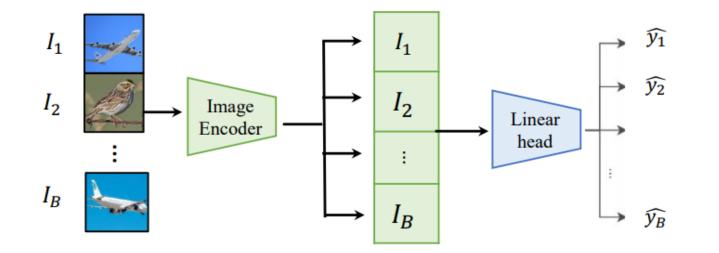
CLIP ViT-B-16	ImageNet ID Accuracy	ImageNet OOD Accuracy
Zero-Shot	68.3	58.7

• In practice however, one would like to further finetune on task-specific data.



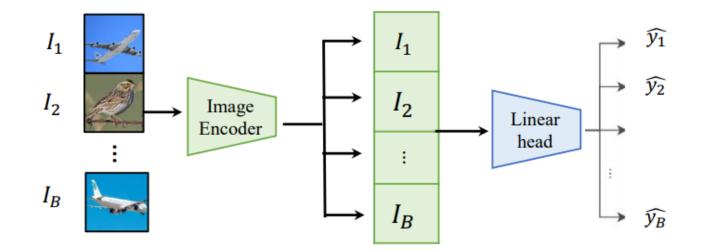
Standard approaches involve finetuning the image encoder + linear head using the cross-entropy loss

$$\ell_{fine} = -\sum_{i=1}^{B} \ell_{xent}(\hat{y}_i, y_i)$$



Standard approaches involve finetuning the image encoder + linear head using the cross-entropy loss

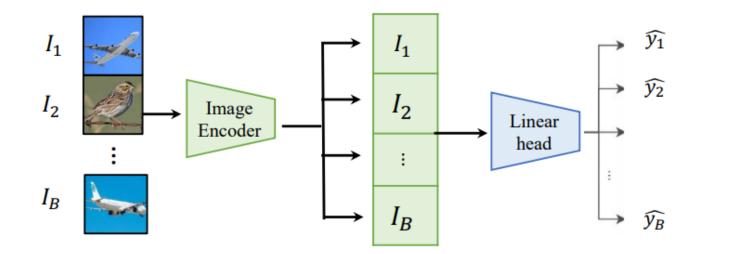
$$\ell_{fine} = -\sum_{i=1}^{B} \ell_{xent}(\hat{y}_i, y_i)$$



Standard approaches involve finetuning the image encoder + linear head using the cross-entropy loss

$$\ell_{fine} = -\sum_{i=1}^{B} \ell_{xent}(\hat{y}_i, y_i)$$

	ImageNet ID Accuracy	ImageNet OOD Accuracy
Zero-Shot	68.3	58.7
Finetuning	81.4	

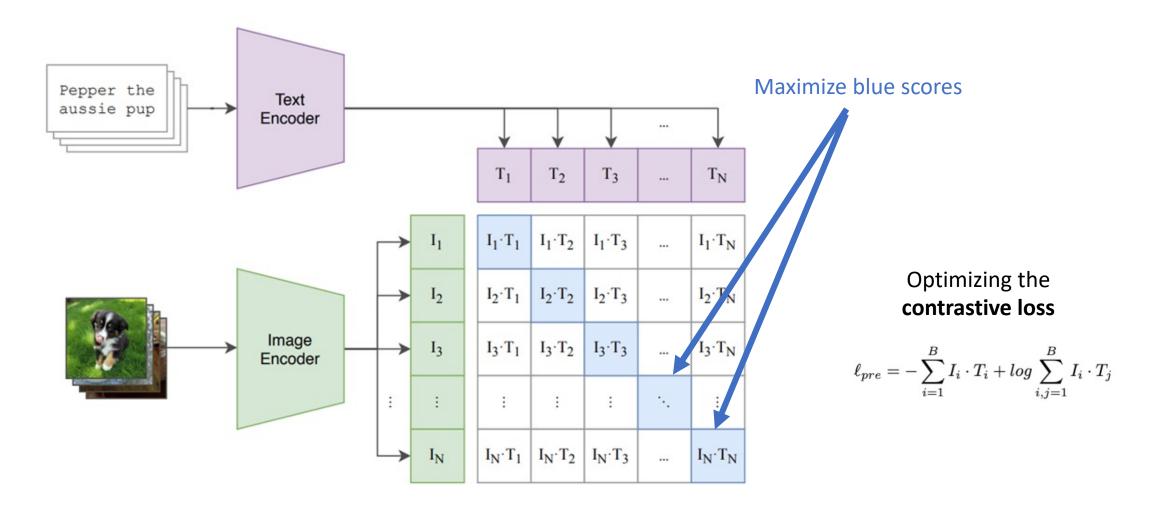


Standard approaches involve finetuning the image encoder + linear head using the cross-entropy loss

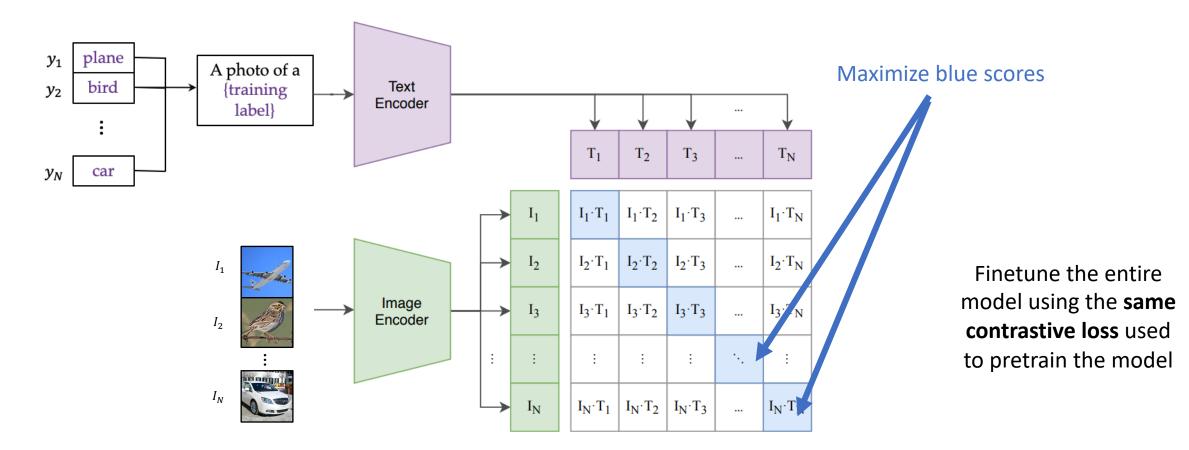
$$\ell_{fine} = -\sum_{i=1}^{B} \ell_{xent}(\hat{y}_i, y_i)$$

• Mismatch between the pretraining objective and the finetuning objective.

	ImageNet ID Accuracy	ImageNet OOD Accuracy
Zero-Shot	68.3	58.7
Finetuning	81.4	54.8

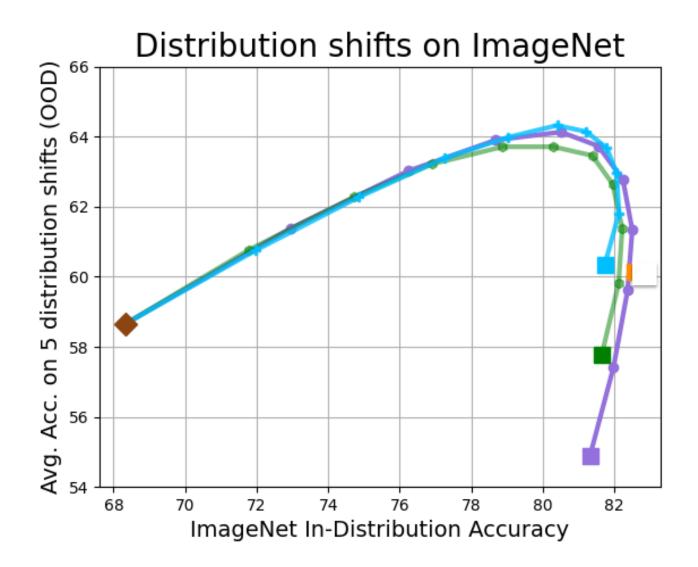


Finetune Like You Pretrain



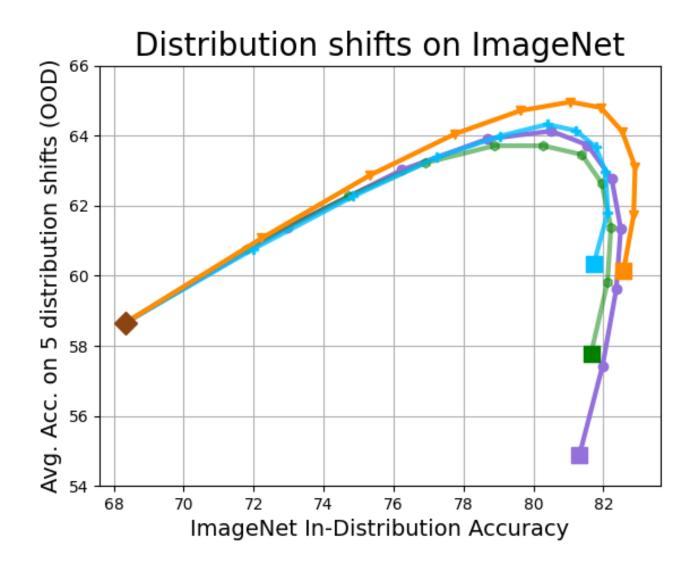
Construct captions from labeled data, and continue pretraining

FLYP outperforms other methods (I)



- ---- Full Finetuning
- 🔶 L2-SP
- ---- LP-FT
- ----- FLYP (Ours)
- Zeroshot Model
- Weight Ensembling Curves
- ★ Ensembling with best ID Validation Accuracy
- Fintuned Model without ensembling

FLYP outperforms other methods (I)



- ---- Full Finetuning
- 🔶 L2-SP
- ---- LP-FT
- ----- FLYP (Ours)
- Zeroshot Model
- Weight Ensembling Curves
- ★ Ensembling with best ID Validation Accuracy
- Fintuned Model without ensembling

State-of-the-Art Accuracies

- FLYP on CLIP-large: SOTA on iWildCam (wildlife conservation dataset)
- Highest ever reported accuracy

	Architecture	ID	OOD
FLYP	ViTL-336px	59.9 (0.7)	46.0(1.3)
Model Soups	ViTL	$57.6\ (1.9)$	43.3~(1.)
ERM	ViTL	$55.8\ (1.9)$	41.4 (0.5)
ERM	PNASNet	52.8(1.4)	$38.5\ (0.6)$
ABSGD	ResNet50	47.5(1.6)	33.0(0.6)

FLYP outperforms other methods (II)

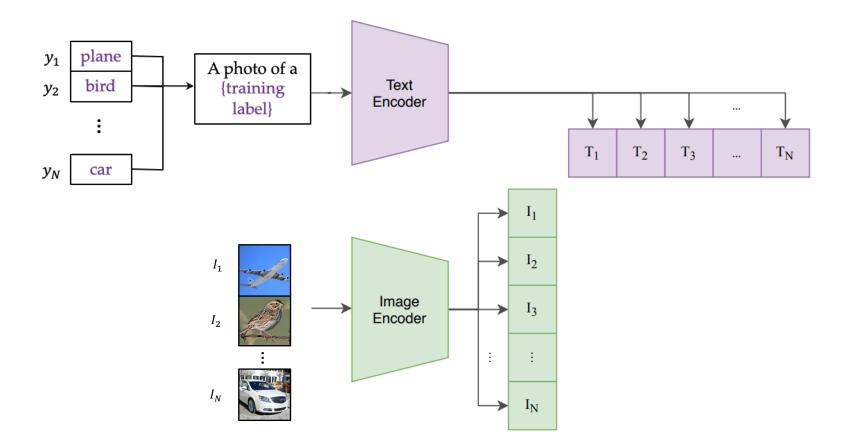
Methods	iWILDCam		FMoW	
	ID	OOD	ID	OOD
Zeroshot	08.7	11.0	20.4	18.6
FT	48.1	35.0	68.5	39.2
LP-FT	50.2	35.7	68.4	40.4
FLYP (OURS)	52.5	37.1	68.6	41.3

• More results: Few-shot learning, standard transfer learning datasets

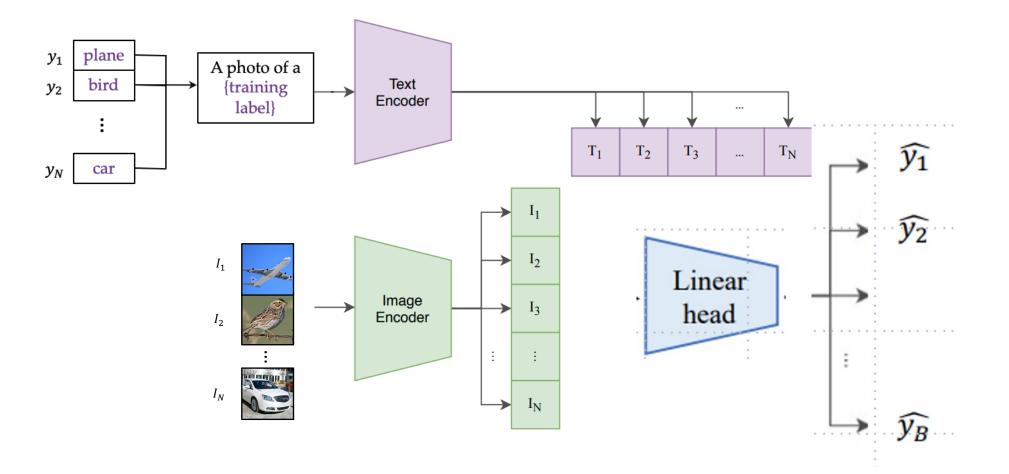
Using fine-tuning = pretraining is key

- Subtle deviations from pretraining worsen accuracy
- FLYP finetunes both the encoders. Are the gains simply due to finetuning both the encoders?
- Ablation 1 : Finetuning both the image and language encoders using cross-entropy loss.

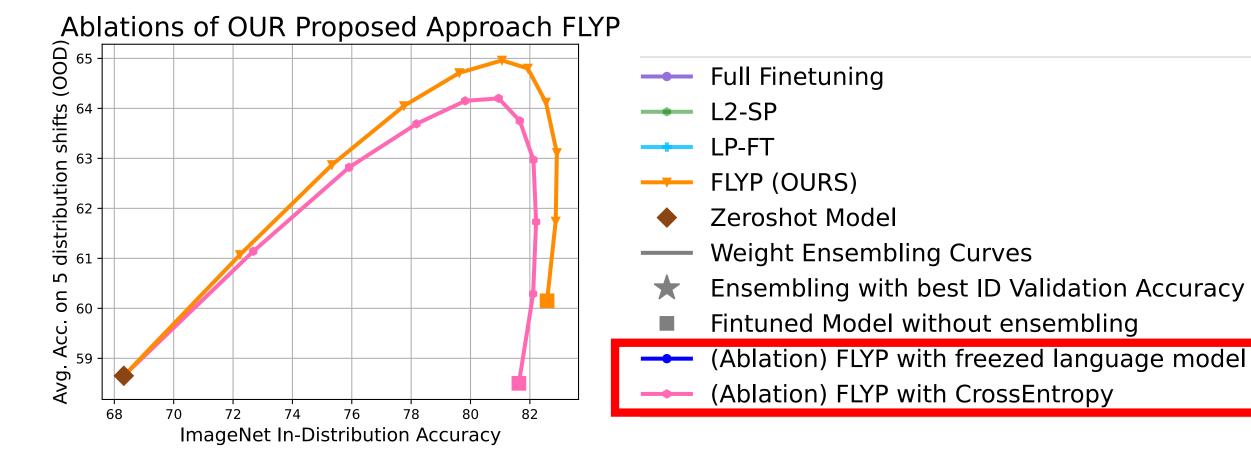
Finetuning both encoders using CE loss



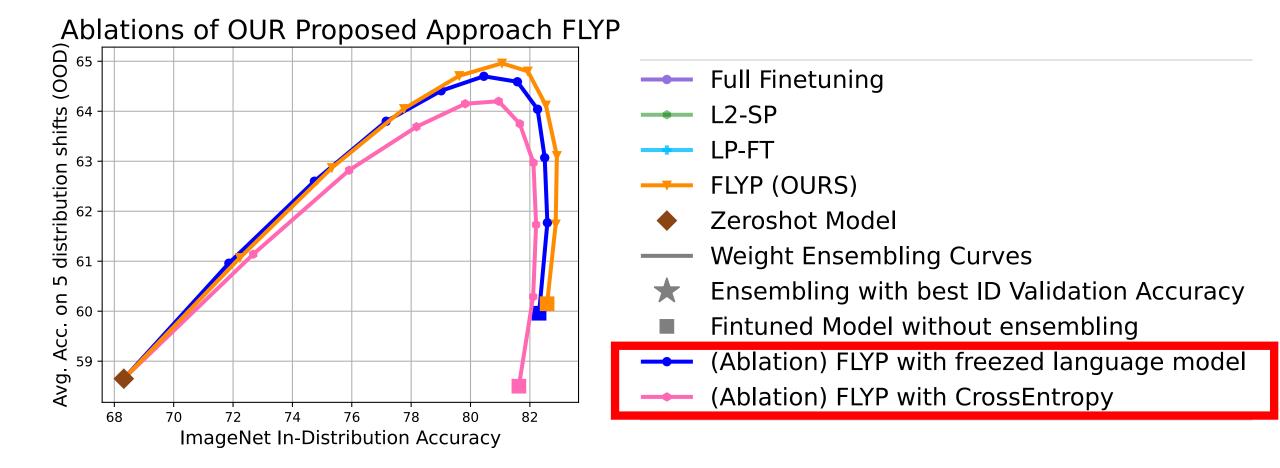
Finetuning both encoders using CE loss



Finetuning both encoders using CE loss



Finetuning only the image encoder?



Using fine-tuning = pretraining is key

- Correcting for class-collisions in contrastive finetuning.
 - There can be multiple samples from the same class in a mini-batch
 - The contrastive loss would also separate embeddings for such samples, which can be sub-optimal.
 - However, removing such collisions only hurts the accuracy.

Summary

- We need to think carefully about finetuning procedures for the pretrained models.
- In this work, we showed a simple change to the finetuning procedure for CLIP can greatly improve the robustness of the finetuned model.