Self-Supervised Learning from Images with a **Joint-Embedding Predictive Architecture**

June 1st 2023

Mido Assran

Quentin Duval

Ishan Misra

Piotr Bojanowski

Pascal Vincent

Mike Rabbat

Yann LeCun

Nicolas Ballas

Self-Supervised Learning

Towards General Representations

Approach

Learn to represent data by capturing mutual dependencies between inputs

Yann LeCun <u>A Path Towards Autonomous Machine Intelligence</u> OpenReview, 2022.

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...

Joint-Embedding Architecture

Generative Architecture

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...

Joint-Embedding Architecture

Generative Architecture

Joint-Embedding Predictive Architecture

Common Approaches for Visual Representation Learning

Joint-Embedding Architecture

Chen et al., <u>A Simple Framework for Contrastive Learning of Visual Representations</u> ICML, 2020.

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

Self-Supervised Methods

Canonical Joint-Embedding Architecture

Limitations:

Semantic level of representations also depends on certain assumptions...

Published as a conference paper at ICLR 2023

THE HIDDEN UNIFORM CLUSTER PRIOR IN SELF-SUPERVISED LEARNING

Mahmoud Assran^{*1,2,3}, Randall Balestriero¹, Quentin Duval¹, Florian Bordes^{1,3,4} Ishan Misra¹, Piotr Bojanowski¹, Pascal Vincent^{1,3,4}, Michael Rabbat^{1,3}, Nicolas Ballas¹ ¹Meta AI (FAIR) ²McGill University, ECE ³Mila, Quebec AI Institute ⁴Universite de Montreal, DIRO

Randall Balestriero

Quentin Duval

Florian

Bordes

Ishan Misra

Piotr Bojanowski Vincent

Pascal

Rabbat

Ballas

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...

Joint-Embedding Architecture

Generative Architecture

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...

Mask Denoising Architectures

Masked Autoencoders Are Scalable Vision Learners arXiv, 2021.

Generative Architecture

Self-Supervised Learning

Generative Architectures

Generative architectures tend to learn representations of a lower semantic level...

Published as a conference paper at ICLR 2023

WHAT DO SELF-SUPERVISED VISION TRANSFORMERS LEARN?

Namuk Park^{1*} Wonjae Kim² Byeongho Heo² Taekyung Kim² Sangdoo Yun² ¹Prescient Design, Genentech ²NAVER AI Lab park.namuk@gene.com {wonjae.kim,bh.heo,taekyung.k,sangdoo.yun}@navercorp.com

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...

Joint-Embedding Architecture

Generative Architecture

Joint-Embedding Predictive Architecture

Towards More General Representations

Quentin Duval

Ishan Misra

Piotr Bojanowski

Pascal Vincent

Mike Rabbat

LeCun

Nicolas Ballas

From a single context block, predict representations of various target blocks...

... no hand-crafted data augmentations!

Towards More General Representations

Very efficient...

Training ViT-Huge/16 with I-JEPA is faster than training ViT-Small/16 with iBOT!

Converges faster than generative methods, which require many epochs of pre-training (MAE)

Towards More General Representations

Targets	Arch.	Epochs	Top-1
Target-Encoder Output	ViT-L/16	500	66.9
Pixels	ViT-L/16	800	40.7

Table 7. Ablating targets. Linear evaluation on ImageNet-1K using only 1% of the available labels; ablating the effect of the prediction targets during I-JEPA pretraining. To ensure convergence when predicting in pixel space, we trian the model for more epochs. The semantic level of the I-JEPA representations degrades significantly when the loss is applied in pixel space, rather than representation space, highlighting the importance of the targetencoder during pretraining.

I-JEPA is non-generative...

Same method in pixel space performs much worse on semantic classification tasks...

Towards More General Representations

Towards More General Representations

Method	Arch.	CIFAR100	Places205	iNat18
Methods without view data augmentations				
data2vec [7]	ViT-L/16	81.6	54.6	28.1
MAE [34]	ViT-H/14	77.3	55.0	32.9
I-JEPA	ViT-H/14	87.5	58.4	47.6
Methods using extra view data augmentations				
DINO [17]	ViT-B/8	84.9	57.9	55.9
iBOT [74]	ViT-L/16	88.3	60.4	57.3

Linear transfer to semantic image-level visual tasks

I-JEPA captures global semantics...

- Outperforms generative methods
- Closes gap with view-invariance methods

Towards More General Representations

Method	Arch.	Clevr/Count	Clevr/Dist
Methods without view data augmentations			
data2vec [7]	ViT-L/16	85.3	71.3
MAE [34]	ViT-H/14	90.5	72.4
I-JEPA	ViT-H/14	86.7	72.4
Methods using extra data augmentations			
DINO [17]	ViT-B/8	86.6	53.4
iBOT [74]	ViT-L/16	85.7	62.8

Linear Transfer to Low-Level Visual Tasks

I-JEPA also captures local information...

- Outperforms view-invariance methods in low-level tasks (e.g., depth prediction)
- Comparable with generative methods

Towards More General Representations

Method	Arch.	Epochs	Top-1
Methods without view data augmentations			
data2vec [7]	ViT-L/16	1600	73.3
MAE [34]	ViT-L/16	1600	67.1
	ViT-H/14	1600	71.5
	ViT-L/16	600	69.4
I-JEPA	ViT-H/14	300	73.3
	ViT-H/16448	300	77.3

Methods using extra view data augmentations

iBOT [74]	ViT-B/16	250	69.7
DINO [17]	ViT-B/8	300	70.0
SimCLR v2 [33]	RN151 (2×)	800	70.2
BYOL [33]	RN200 (2×)	800	71.2
MSN [3]	ViT-B/4	300	75.7

ImageNet 1% Semi-Supervised Evaluation

Scaling I-JEPA...

New SoTA for ImageNet semi-supervised eval...