Unbiased Scene Graph Generation in Videos

THU-PM-210

Sayak Nag¹

Kyle Min²

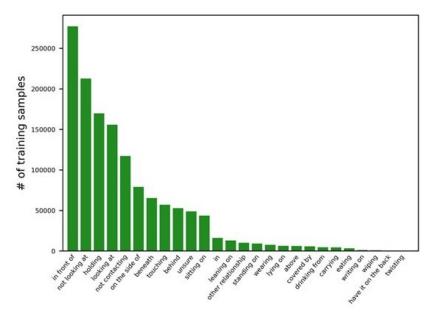
Subarna Tripathi²

Amit K. Roy-Chowdhury¹

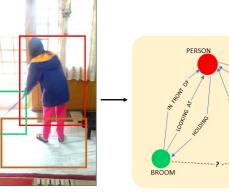
¹Video Computing Group

Center for Robotics & Intelligent Systems

Dynamic Scene Graph Generation

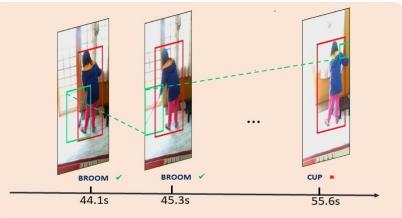


Triplet: <subject-predicate-object> eg: <person-next to- sofa>



Inherent Challenges

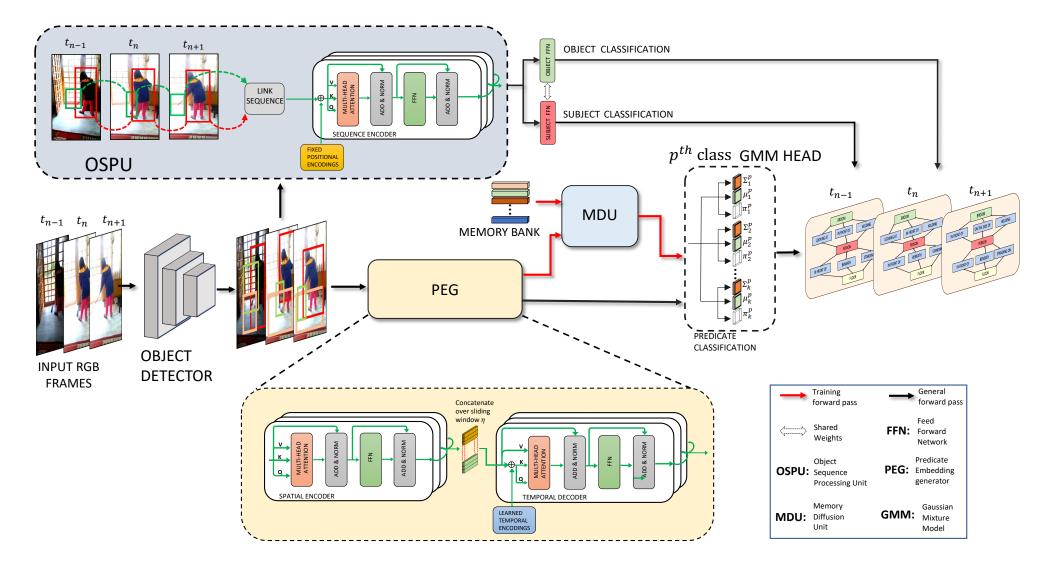
Long-Tailed Distribution of Predicate Classes


Noisy Labelling


Missing annotations and multiple possible correct predications

FLOOR

Temporally Inconsistent Object Classification


Triplet Variability

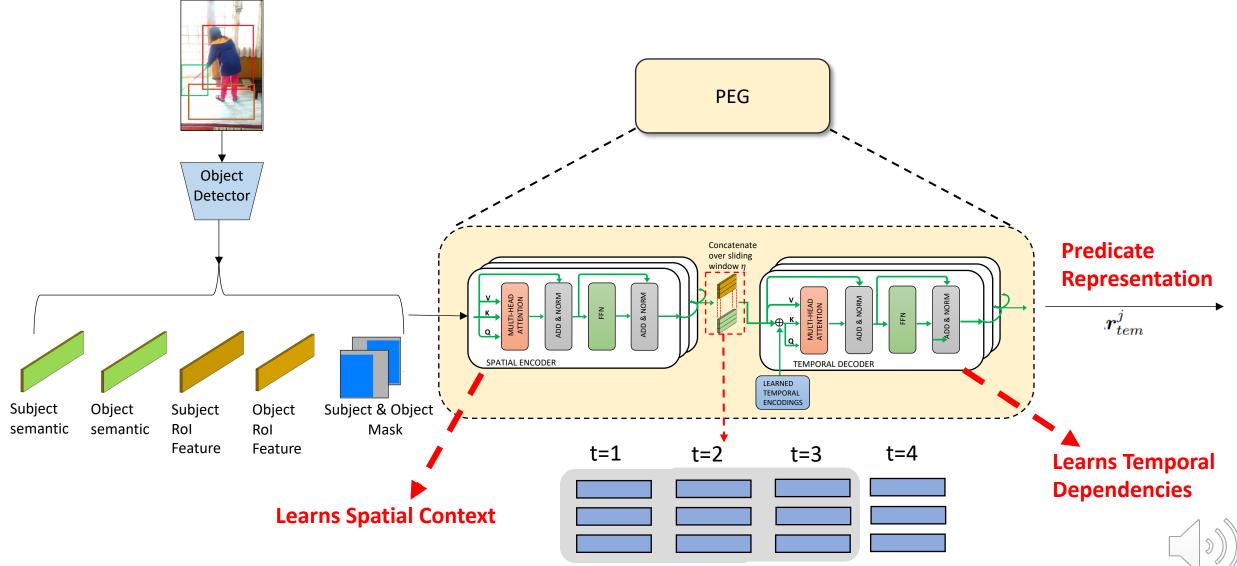
Same relationship with multiple possible subjectobject pairs

Motion Blur and Occlusion hinders object classification Page 3

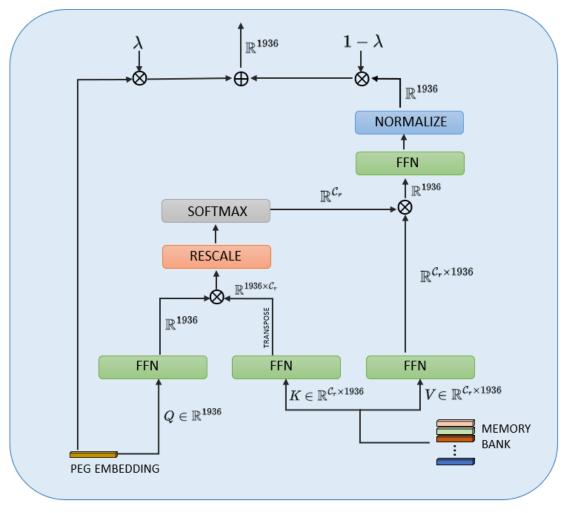

FRAMEWORK

TEMPURA: TEmporal consistency and Memory Prototype guided Uncertainty Attenuation for Unbiased dynamic SGG

Temporal Consistency in Object Classification



INPUT:
$$\mathcal{T}_{t_jk_j}^j = \{ \boldsymbol{v}_i^t, \boldsymbol{v}_i^{t+1}, \dots, \boldsymbol{v}_i^{t+k} \}$$
, $1 \le t_j, k_j \le T$, each \boldsymbol{v}_i^t has same detected class.

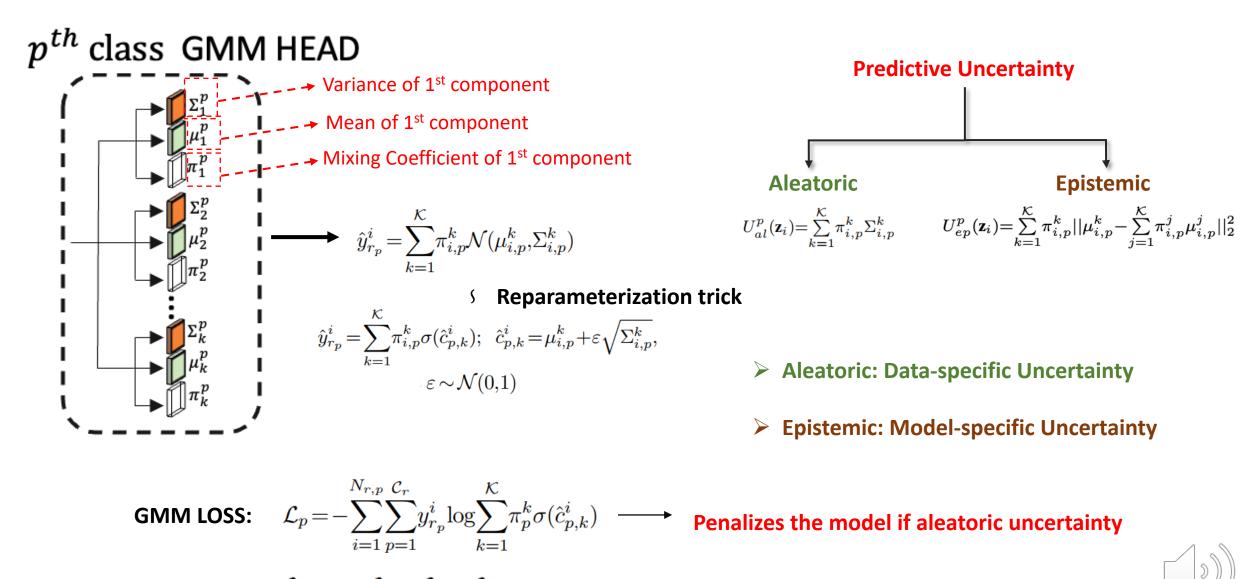

OSPULOSS:
$$\mathcal{L}_{o} + \mathcal{L}_{intra}$$

 $\mathcal{L}_{intra} = \sum_{i} \sum_{j} ||\hat{x}_{o_{i}} - \hat{x}_{o_{j}}^{+}||_{2}^{2} + \sum_{k} max(0, 1 - ||\hat{x}_{o_{i}} - \hat{x}_{o_{k}}^{-}||_{2}^{2})$

Intra-Video supervised contrastive loss -> Enhances the temporal consistency of positive pairs

Predicate Representations

Memory Guided Training



Memory Diffusion Unit

- > Memory bank: $\Omega_R = \{\omega_p\}_{p=1}^{C_r}$ Memory -> $\omega_p = \frac{1}{N_{yr_p}} \sum_{j=1}^{N_{yr_p}} r_{tem}^j \ \forall p \in \mathcal{Y}_r$ Prototype
- $\begin{array}{l} \succ \quad \text{OUTPUT:} \quad \hat{\boldsymbol{r}}_{tem}^{j} = \lambda \boldsymbol{r}_{tem}^{j} + (1-\lambda) \boldsymbol{r}_{mem}^{j} ; 0 < \lambda \leq 1 \\ \boldsymbol{r}_{mem}^{j} = \mathbb{A}(\boldsymbol{r}_{tem}^{j}, \boldsymbol{\Omega}_{\boldsymbol{r}}) \text{ is cross-attention} \\ \text{b/w.} \quad \boldsymbol{r}_{tem}^{j} \text{ and } \boldsymbol{\Omega}_{\boldsymbol{r}}. \end{array}$
- If λ is too high, debiasing fails, and if too low model becomes biased towards data-poor classes.
- Memory bank of current epoch is computed from the predicate embeddings of previous epoch.
- MDU used during training only and acts as a structural meta-regularizer.

Uncertainty Attenuated Predicate Classification

TOTAL LOSS: $\mathcal{L}_{total} = \mathcal{L}_p + \mathcal{L}_o + \mathcal{L}_{intra}$

Experimental Setup

Dataset

Action Genome

➢ 35 object classes

> 26 HOI Predicates

SGG Tasks

- PREDCLS: object bounding box and labels given
- SGCLS: object bounding box given
- ➤ SGDET: end to end SGG

Evaluation Setups

With Constraint: At most one edge of allowed b/w subject-object pairs

> No Constraint: Multiple edges allowed b/w object pairs

Performance Metrics

Recall@K: Recall computed over entire dataset making it biased towards data rich classes
mean-Recall@K: Recall computed over each predicate class and then averaged

Comparative Results

Method			With Cons	No Constraints								
	mR@10	mR@20	mR@50	R@10	R@20	R@50	mR@10	mR@20	mR@50	R@10	R@20	R@50
RelDN [64]	3.3	3.3	3.3	9.1	9.1	9.1	7.5	18.8	33.7	13.6	23.0	36.6
HCRD supervised [15]	-	8.3	9.1	-	27.9	30.4	-	-	-	-	-	-
TRACE [56]	8.2	8.2	8.2	13.9	14.5	14.5	22.8	31.3	41.8	26.5	35.6	45.3
ISGG [28]	-	19.7	22.9	-	29.2	35.3	-	-	-	-	-	-
STTran [9]	16.6	20.8	22.2	25.2	34.1	37.0	20.9	29.7	39.2	24.6	36.2	48.8
STTran-TPI [58]	15.6	20.2	21.8	26.2	34.6	37.4	-	-	-	-	-	-
APT [37]	-	-	-	26.3	36.1	38.3	-	-	-	25.7	37.9	50.1
TEMPURA	18.5	22.6	23.7	28.1	33.4	34.9	24.7	33.9	43.7	29.8	38.1	46.4

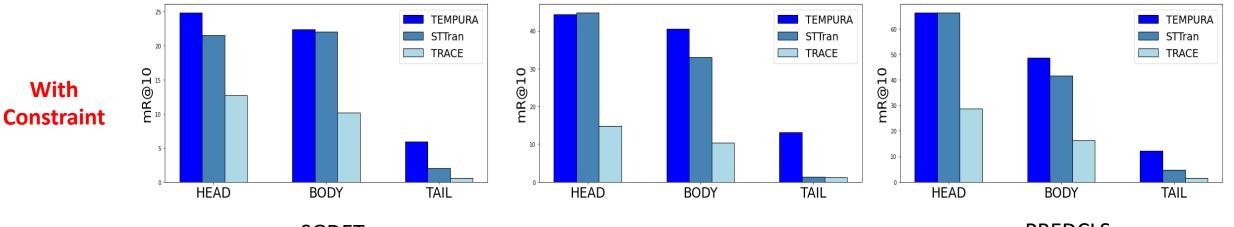
Table 1. Comparative results for SGDET task, on AG [24], in terms of m-Recall@K and Recall@K.

> PREDCLS: $\lambda = 0.5$ > SGCLS: $\lambda = 0.3$ > SGDET: $\lambda = 0.5$

Table 2. Comparative results for SGG tasks: PREDCLS and SGCLS, on AG [24], in terms of *m-Recall@K*.

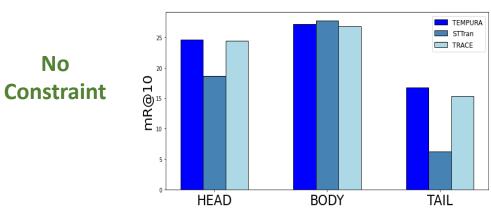
	With Constraint							No Constraints						
Method	PredCLS			SGCLS			PredCLS			SGCLS				
	mR@10	mR@20	mR@50	mR@10	mR@20	mR@50	mR@10	mR@20	mR@50	mR@10	mR@20	mR@50		
RelDN [64]	6.2	6.2	6.2	3.4	3.4	3.4	31.2	63.1	75.5	18.6	36.9	42.6		
TRACE [56]	15.2	15.2	15.2	8.9	8.9	8.9	50.9	73.6	82.7	31.9	42.7	46.3		
STTran [9]	37.8	40.1	40.2	27.2	28.0	28.0	51.4	67.7	82.7	40.7	50.1	58.8		
STTran-TPI [58]	37.3	40.6	40.6	28.3	29.3	29.3	-	-	-	-	-	-		
TEMPURA	42.9	46.3	46.3	34.0	35.2	35.2	61.5	85.1	98.0	48.3	61.1	66.4		

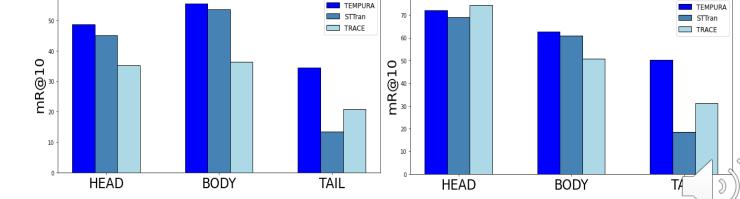
Table 3. Comparative results for SGG tasks: PREDCLS and SGCLS, on AG [24], in terms of Recall@K.


	With Constraint							No Constraints						
Method	PredCLS			SGCLS			PredCLS			SGCLS				
	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50		
RelDN [64]	20.3	20.3	20.3	11.0	11.0	11.0	44.2	75.4	89.2	25.0	41.9	47.9		
TRACE [56]	27.5	27.5	27.5	14.8	14.8	14.8	72.6	91.6	96.4	37.1	46.7	50.5		
STTran [9]	68.6	71.8	71.8	46.4	47.5	47.5	77.9	94.2	99.1	54.0	63.7	66.4		
STTran-TPI [58]	69.7	72.6	72.6	47.2	48.3	48.3	-	-	-	-	-	-		
APT [37]	69.4	73.8	73.8	47.2	48.9	48.9	78.5	95.1	99.2	55.1	65.1	68.7		
TEMPURA	68.8	71.5	71.5	47.2	48.3	48.3	80.4	94.2	99.4	56.3	64.7	67.9		

- Outperforms prior methods in terms of mR@K
- Does not compromise on R@K

Comparative Results


- *HEAD* \geq 100000 training samples
- 8000 training samples $\leq BODY < 100000$ training samples
- *TAIL* < 8000 training samples

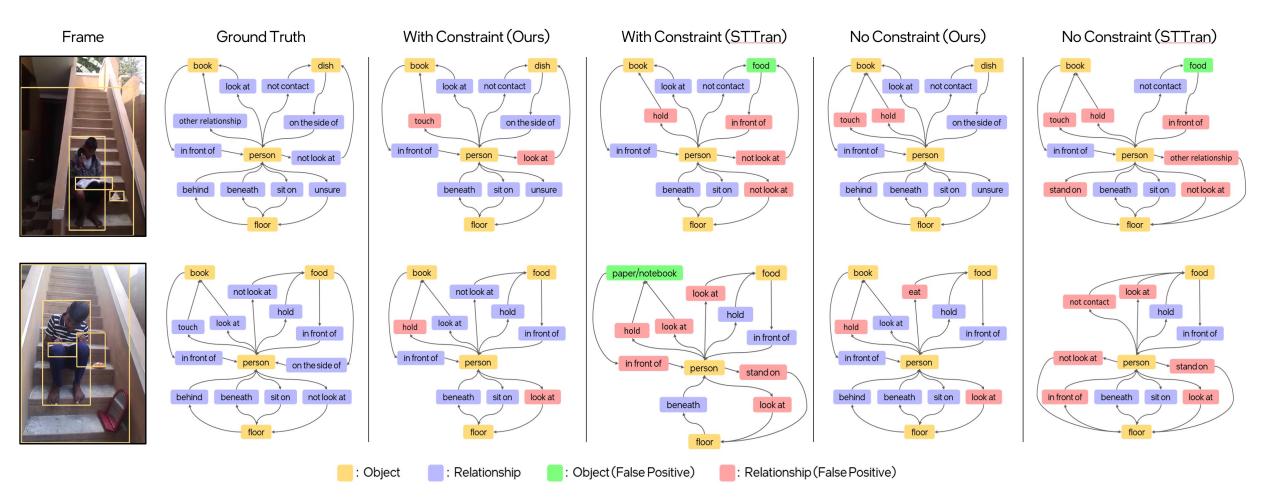
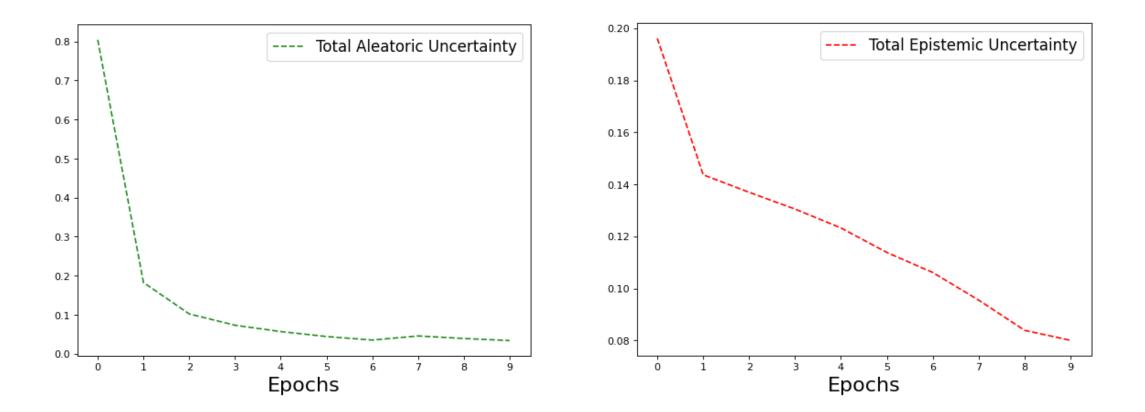


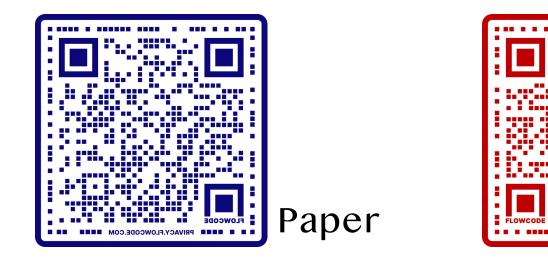
SGDET

SGCLS

PREDCLS

Qualitative Visualization


Figure 8. Comparative qualitative results. From left to right: input video frames, ground truth scene graphs, scene graphs generated by TEMPURA, and the scene graphs generated by the baseline STTran [10]. Incorrect object and predicate predictions are shown in green and pink, respectively \sim

Uncertainty Analysis

Is the predictive uncertainty being attenuated?

Poster Session: June 22 Poster ID: 210

https://arxiv.org/abs/2304.00733

https://github.com/sayaknag/unbiasedSGG.git

Codebase