

Lookahead Diffusion Probabilistic Models for Refining Mean Estimation

Guoqiang Zhang¹, Kenta Niwa², W. Bastiaan Kleijn³ ¹University of Technology Sydney, Australia ²NTT Communication Science Laboratories, Japan ³Victoria University of Wellington, New Zealand

TUE-AM-135

Background

A forward diffusion process

$$\boldsymbol{z}_t = \alpha_t \boldsymbol{x} + \sigma_t \boldsymbol{\epsilon}_t \quad \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \boldsymbol{I}), \boldsymbol{x} \sim p_{data}(\boldsymbol{x})$$

Reverse probability-flow ODE for sampling

$$\frac{d\boldsymbol{z}_t}{dt} = \frac{d\log\alpha_t}{dt}\boldsymbol{z}_t + \left(\frac{1}{2\sigma_t}\frac{d\sigma_t^2}{dt} - \frac{d\log\alpha_t}{dt}\sigma_t\right)\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},t} \quad \boldsymbol{z}_{T=1} \sim \mathcal{N}(0, \tilde{\sigma}\boldsymbol{I})$$

Popular ODE solvers: DDIM, DEIS, SPNDM

JUNE 18-22, 2023 CVPR VANCOUVER, CANADA

Proposed Lookahead Technique (1)

- Objective: To improve performance of existing ODE solvers
- > Basic idea: To exploit $\hat{x}_i \hat{x}_{i+1}$ in computation of z_{i-1}

Proposed Lookahead Technique (2)

- > Assumption: \hat{x}_i is increasingly accurate as *i* decreases to 0.
- \succ Perform extrapolation to better estimate x

Existing ODE Solvers

Update expressions of (DDIM, DEIS, SPNDM)

$$\begin{split} \tilde{\boldsymbol{\epsilon}}_{[i:i+r]} &= \sum_{j=0} c_{ij} \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},i+j} \qquad [\text{linear combination of order } r] \\ \boldsymbol{z}_{i-1} &= \alpha_{i-1} \underbrace{\left(\frac{\boldsymbol{z}_i - \sigma_i \tilde{\boldsymbol{\epsilon}}_{[i:i+r]}}{\alpha_i}\right)}_{\hat{\boldsymbol{x}}_i} + \sigma_{i-1} \tilde{\boldsymbol{\epsilon}}_{[i:i+r]}, \end{split}$$

• When order r = 0, it reduces to DDIM

Lookahead-Based ODE Solvers

Update expressions

$$\tilde{\boldsymbol{\epsilon}}_{[i:i+r]} = \sum_{j=0}^{r} c_{ij} \hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta}}(\boldsymbol{z}_{i+j}, i+j) \qquad \text{[linear combination of order } r\text{]}$$
$$\hat{\boldsymbol{x}}_{i} = \left(\frac{\boldsymbol{z}_{i} - \sigma_{i} \tilde{\boldsymbol{\epsilon}}_{[i:i+r]}}{\alpha_{i}}\right)$$
$$\boldsymbol{z}_{i-1} = \alpha_{i-1} [\hat{\boldsymbol{x}}_{i} + \underbrace{\lambda(\hat{\boldsymbol{x}}_{i} - \hat{\boldsymbol{x}}_{i+1})}_{\text{extrapolation}}] + \sigma_{i-1} \tilde{\boldsymbol{\epsilon}}_{[i:i+r]}$$

- > The extrapolation $\lambda(\tilde{x}_i \tilde{x}_{i-1})$ provides additional gradient information to better estimate x
- > Theoretical analysis is provided in the paper, showing that positive λ improves estimation accuracy of x under certain assumptions

Experimental Results (0)

- Summary of Experiments
 - Lookahead technique in DDIM and DDPM
 - Lookahead technique in DEIS
 - Lookahead technique in SPNDM
 - Lookahead technique in consistency models (Song et al. 2023)
- All the above experiments produce positive results, indicating the effectiveness of the lookahead technique.

Experimental Results (1)

Lookahead technique in DDIM and DDPM \triangleright

Table 1. Comparison of FID score for CIFARTO, Celebrot, and imagerveto4. Lower is better.																		
Data sets	CIFAR10				CelebA64						ImageNet64							
Timesteps	10	25	50	100	200	1000	10	25	50	100	200	1000	10	25	50	100	200	1000
NPR-DDPM	32.64	10.48	6.18	4.46	3.70	4.04	28.32	15.51	10.70	8.28	7.01	5.26	53.22	28.41	21.05	18.26	16.75	16.30
LA-NPR-DDPM	25.59	8.48	5.28	4.07	3.47	3.90	25.08	13.92	9.58	7.43	6.32	5.01	48.71	25.42	20.27	18.16	16.83	16.27
gain $(\%)$	21.6	19.1	14.6	8.7	6.2	3.5	11.4	10.3	10.4	10.3	9.8	4.75	8.5	10.5	3.7	0.5	-0.5	0.2
SN-DDPM	23.75	6.88	4.58	3.67	3.31	3.65	20.55	11.85	7.58	5.95	4.96	4.44	51.09	27.77	20.65	18.07	16.70	16.30
LA-SN-DDPM	19.75	5.92	4.31	3.55	3.24	3.55	17.43	10.08	6.41	5.12	4.41	4.21	46.13	24.67	19.83	17.95	16.76	16.28
gain (%)	16.8	14.0	5.9	3.3	2.1	2.7	15.2	14.9	15.4	13.9	11.1	5.2	9.7	11.2	4.0	0.7	-0.4	0.1
NPR-DDIM	13.41	5.43	3.99	3.53	3.40	3.67	14.94	9.18	6.17	4.40	3.67	3.12	97.27	28.75	19.79	17.71	17.15	17.59
LA-NPR-DDIM	10.74	4.71	3.64	3.33	3.29	3.49	14.25	8.83	5.67	3.76	2.95	2.95	71.98	25.39	19.47	18.11	17.89	18.41
gain (%)	19.9	13.3	8.8	5.7	3.2	4.9	4.6	3.8	8.1	14.5	19.61	5.4	26.0	11.7	1.6	-2.3	-4.3	-4.7
SN-DDIM	12.19	4.28	3.39	3.22	4.22	3.65	10.17	5.62	3.90	3.21	2.94	2.84	91.29	27.74	19.51	17.67	17.14	17.60
LA-SN-DDIM	8.48	3.15	2.93	2.92	3.08	3.47	8.05	4.56	2.93	2.39	2.19	2.48	69.11	25.07	19.32	18.06	17.89	18.57
gain (%)	30.4	26.4	13.6	9.3	27.0	4.9	20.8	18.9	24.9	25.5	25.5	12.7	24.3	9.6	9.7	-2.2	-4.4	-5.5

Table 1: Companian of FID goons for CIEAD10, Calab A64, and ImageNet64. Lower is better

Experimental Results (2)

Lookahead technique in DEIS

Experimental Results (3)

Lookahead technique in SPNDM

Experimental Results (4)

Lookahead technique in consistency models (Song et al. 2023)

	FID over ImageNet64						
time-steps	3	4					
CD (LPIPS)	4.99	4.75					
LA-CD (LPIPS)	4.78	4.65					

CD: consistency distillation LPIPS: A DNN-based distance criterion

- > The above results are obtained recently, and are not included in the paper
- Song et al., "Consistency Models", arXiv:2303:01469 [cs.LG], 2023.

Conclusions and New Results

Conclusions

- Extrapolation on both the estimated clean images and estimated Gaussian noises are compatible.
- However, manual tuning of λ is needed.

Our recent progress

- Developed a new approach that can learn the optimal strengths of the extrapolations (no manual-tuning is required any more).
- The new paper will be made public on arXiv soon.