Re-basin via implicit Sinkhorn differentiation Paper Tag: THU-AM-357

Fidel Guerrero Pena, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric Granger, Marco Pedersoli

LIVIA, Department of Systems Engineering École de Technologie Supérieure

LABORATOIRE D'IMAGERIE, DE VISION ET D'INTELLIGENCE ARTIFICIELLE

Re-basin: Find a suitable permutation of the parameters such that minimizes a given objective

Example: Re-basin for linear mode connectivity

Objective: Find the permutation of θ that minimizes Barrier(θ , θ')

Barrier(
$$\theta, \theta'$$
) = sup _{λ} [[$\mathcal{C}((1-\lambda)\theta + \lambda\theta')$] - [$(1-\lambda)\mathcal{C}(\theta) + \lambda\mathcal{C}(\theta')$]]

Example: Re-basin for linear mode connectivity

WM - Weight Matching re-basin [Ainsworth et al., 2022]

Re-basin via implicit Sinkhorn differentiation

Learning the permutations using Sinkhorn operator

Model: $\ell'_i(z) = \sigma(S_{\tau}(P_i)W_iS_{\tau}(P_{i-1}^T)z + S_{\tau}(P_i)b_i)$

Cost functions:

L2 distance loss: $C_{L2}(\mathcal{P}; \theta_A, \theta_B) = ||\theta_A - \pi_{\mathcal{P}}(\theta_B)||^2$ Middle point loss: $C_{Mid}(\mathcal{P}; \theta_A, \theta_B) = C\left(\frac{\theta_A + \pi_{\mathcal{P}}(\theta_B)}{2}\right)$ Random point loss: $C_{Rnd}(\mathcal{P}; \theta_A, \theta_B) = C\left((1 - \lambda)\theta_A + \lambda \pi_{\mathcal{P}}(\theta_B)\right)$, $\lambda \sim U(0, 1)$

Optimization problem: $\mathcal{P}^* = \arg \min_{\mathcal{P}} \mathcal{C}(\mathcal{P}; \theta_A, \theta_B)$

Example: Re-basin for linear mode connectivity

Objective: Find the permutation of θ that minimizes $C_{Rnd}(\mathcal{P}; \theta, \theta')$

$$\mathcal{C}_{Rnd}(\mathcal{P};\theta,\theta') = \mathcal{C}\left((1-\lambda)\theta' + \lambda\pi_{\mathcal{P}}(\theta)\right), \lambda \sim \cup (0,1)$$

Example: Re-basin for linear mode connectivity

WM - Weight Matching re-basin [Ainsworth et al., 2022]

Proposed method

Permutation transformation

Let a feed forward neural network be defined as:

 $f_{\theta}(x) = (\ell_h \circ \dots \circ \ell_1)(x),$ $\ell_i(z) = \sigma(W_i z + b_i)$

a permuted model is defined as: $f'_{\theta}(x) = (\ell'_{h} \circ \dots \circ \ell'_{1})(x),$ $\ell'_{i}(z) = \sigma(P_{i}W_{i}P_{i-1}^{T}z + P_{i}b_{i}),$ with $P_{h} = P_{0}^{T} = I$

such that the functionally equivalence holds, $f_{\theta}(x) = f'_{\theta}(x), \forall x$

Permutation transformation

$$f'_{\theta}(x) = (\ell'_{h} \circ \dots \circ \ell'_{1})(x),$$

$$\ell'_{i}(z) = \sigma(\mathbf{P}_{i} \mathbf{W}_{i} \mathbf{P}_{i-1}^{\mathsf{T}} z + \mathbf{P}_{i} b_{i}),$$

where P_i is a permutation matrix, i.e., a binary matrix such that there is only a single 1 per row and column.

 $P_i^T P_i = I$

Example of permutation matrices:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Permuted model definition with soft permutation matrices $\ell'_{i}(z) = \sigma(S_{\tau}(P_{i})W_{i}S_{\tau}(P_{i-1}^{T})z + S_{\tau}(P_{i})b_{i})$

with Sinkhorn operator [Mena et al., 2018] defined as:

$$S_{\tau}^{(0)}(X) = \exp\left(\frac{X}{\tau}\right),$$

$$S_{\tau}^{(t+1)}(X) = \mathcal{T}_{c}(\mathcal{T}_{r}(S_{\tau}^{(t)}(X))).$$

Drawback: Not efficient differentiation. **Solution:** Implicit differentiation [Eisenberger et al., 2022]

Figure: Soft permutation matrices before – P_i – and after – $S(P_i)$ – applying Sinkhorn.

Learning the permutations using Sinkhorn operator

Model: $\ell'_i(z) = \sigma(S_{\tau}(P_i)W_iS_{\tau}(P_{i-1}^T)z + S_{\tau}(P_i)b_i)$

Cost functions:

L2 distance loss: $C_{L2}(\mathcal{P}; \theta_A, \theta_B) = ||\theta_A - \pi_{\mathcal{P}}(\theta_B)||^2$ Middle point loss: $C_{Mid}(\mathcal{P}; \theta_A, \theta_B) = C\left(\frac{\theta_A + \pi_{\mathcal{P}}(\theta_B)}{2}\right)$ Random point loss: $C_{Rnd}(\mathcal{P}; \theta_A, \theta_B) = C\left((1 - \lambda)\theta_A + \lambda\pi_{\mathcal{P}}(\theta_B)\right)$, $\lambda \sim U(0, 1)$

Optimization problem: $\mathcal{P}^* = \arg \min_{\mathcal{P}} \mathcal{C}(\mathcal{P}; \theta_A, \theta_B)$ Use with your favorite gradient descent-based algorithm!

Proposal – Re-basin incremental learning

Cost function:

$$\mathcal{C}_{CL}(\delta_i, \mathcal{P}_i; \theta_i) = \mathcal{C}\left(\frac{\theta_i + \pi_{\mathcal{P}_i}(\theta_i)}{2} + \delta_i\right) + \beta ||\delta_i||^2$$

Training process solves the optimization problem:

$$\delta_i^*, \mathcal{P}_i^* = \underset{\delta_i, \mathcal{P}_i}{\operatorname{argmin}} \mathcal{C}_{CL}(\delta_i, \mathcal{P}_i; \theta_i)$$

After convergence we choose a model:

$$\theta_{i+1} = (1 - \alpha)\theta_i + \alpha \pi_{\mathcal{P}_i}(\theta_i) + \delta_i$$

Figure: Linear mode connectivity using two VGG models trained over Mnist.

Experimental results

Experiment 1 - Models alignment

 θ_A

conv1 of pre-trained Resnet18

conv1 of randomly permuted

pre-trained Resnet18:

$$\theta_{\rm B} = \pi_{\mathcal{P}}(\theta_{\rm A})$$

Can we find the permutations that align the models?

Experiment 1 – Models alignment

Method	Init	2 hidden 🗼	4 hidden ↓	8 hidden ↓
WM	Rnd	6.05±9.17	4.12±6.58	0.50±1.55
\mathcal{C}_{L2} (Ours)		0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
WM	Pol3	0.57±2.84	0.07±0.46	0.01±0.10
\mathcal{C}_{L2} (Ours)		0.00 ± 0.00	0.00 ± 0.00	0.00±0.00
WM	Pol1	0.27±0.94	0.00±0.00	0.00±0.00
\mathcal{C}_{L2} (Ours)		0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

Table: L1 distance between the estimated and expected re-basing with different network initialization and depth. Distances are scaled $\times 10^3$.

Experiment 1 - Models alignment

Resnet18 models alignment

 $\pi_{\mathcal{P}}(\theta_A)$

 θ_A

Experiment 1 - Models alignment

Figure: Validation loss during Sinkhorn re-basin training for feedforward neural networks with a different number of hidden layers (left panel) and VGG with increasing depth (right panel).

Can we find the permutations that minimize the barrier in the linear path?

Figure: Linear mode connectivity achieved by WM [Ainsworth et al., 2022], STE [Ainsworth et al., 2022], and our Sinkhorn re-basin with C_{L2} , C_{Mid} , and C_{Rnd} costs for a NN with two hidden layers.

Figure: Linear mode connectivity using VGG11 and VGG19 networks trained over Cifar10 dataset.

Figure: Linear mode connectivity using ResNet18 and ResNet34 trained over Imagenette dataset.

Experiment 3 – Incremental learning

Model trained with six orientations

Can we find the permutation that allows us to finetune the model and add new knowledge while avoiding catastrophic forgetting?

Experiment 3 – Incremental learning

	Rotated Mnist		Split Cifar100	
Method	Accuracy 1	Forgetting \downarrow	Accuracy 1	Forgetting \downarrow
Finetune	46.28±1.01	0.52±0.01	35.41±0.95	0.49±0.01
EWC	59.92±1.71	0.34±0.02	50.50±1.33	0.24±0.02
LwF	61.86±3.66	0.29±0.06	41.43±4.06	0.51±0.01
A-GEM	68.47±0.90	0.28±0.01	44.42±1.46	0.36±0.01
Rebasin (Ours)	78.14±0.50	0.12±0.01	51.34±0.74	0.07±0.02
Joint training	90.84±4.30	0.00	60.48±0.54	0.00

Table: Performance of our proposed and state-of-art methods on incremental learning benchmarks over 20 episodes.

Experiment 3 – Incremental learning

Figure: Evolution of task's accuracy during the incremental learning experience on Rotated Mnist with 20 episodes. Only tasks 1, 5, 10, and 15 are shown.

Conclusions

Conclusions

- Gradient descent-based re-basin
- Easy to adapt to new objectives
- New loss functions for neuron alignment, linear mode connectivity, and incremental learning
- Simple to use (PyTorch only!)

from rebasin import RebasinNet
modelA = MLP(input_size = 28 * 28, num_classes = 10)
pi_modelA = RebasinNet(modelA, input_shape = (1, 28 * 28))

Thank you!

Visit our project website!

[Ainsworth et al., 2022] Ainsworth, S. K., Hayase, J., and Srinivasa, S. (2022).

Git re-basin: Merging models modulo permutation symmetries. *arXiv preprint arXiv:2209.04836*.

[Eisenberger et al., 2022] Eisenberger, M., Toker, A., Leal-Taixé, L., Bernard, F., and Cremers, D. (2022).
A unified framework for implicit sinkhorn differentiation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 509–518.

[Mena et al., 2018] Mena, G., Belanger, D., Linderman, S., and Snoek, J. (2018).

Learning latent permutations with gumbel-sinkhorn networks. *arXiv preprint arXiv:1802.08665.*