HandsOff: Labeled Dataset **Generation with no Additional Human** Annotations

CVPR 2023 Highlight Award TUE-PM-370

Austin Xu Georgia Tech

Mariya Vasileva Kaiber

Achal Dave Toyota Research Institute Arjun Seshadri Amazon Style

The HandsOff Framework

- GAN-based synthetic dataset generating framework

• Trained with a small number of real images and their corresponding labels

(1) Train label generator with existing labeled images

We need labeled training data!

Labeled training data underpins the success of contemporary machine learning (ML)

- Obtaining labels remains a bottleneck
 - Increasingly complex labels

Sheer volume of data

[1] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean- Francois Lafleche, Adela Barriuso, Antonio Torralba, and Sanja Fidler. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Figure adapted from [1]

What if we could have access to an *infinite* pool of labeled data?

- More generalizable and accurate models
 - The more data, the merrier! Helps close the generalization gap
 - Access to labeled examples of edge cases can help us tame the long-tail.

The DatasetGAN paradigm

DatasetGAN [1] trains a *label generator* from a small number of *labeled GAN generated images* (<50)

- Starting from a latent code, generate
 - An image, which is then manually annotated with pixel-wise labels, Y
 - A pixel-wise image representation \boldsymbol{S}
- Then, train a *label generator* with the (*S*, *Y*) pairs

Figure adapted from [3]

^[1] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean- Francois Lafleche, Adela Barriuso, Antonio Torralba, and Sanja Fidler. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

The DatasetGAN paradigm: drawbacks?

DatasetGAN relies on *manual annotations* ...

- Limits types of labels that can be synthesized
- Practical drawbacks: labeling infrastructure, start-up costs, etc.
- ... of GAN generated images
 - Does not allow for manual curation of training data
 - Training on labeled GAN images results in lower quality labels [2]

Can we overcome the two drawbacks?

DatasetGAN relies on *manual annotations* ...

- Limits types of labels that can be synthesized
- Practical drawbacks: labeling infrastructure, start-up costs, etc.
- ... of GAN generated images
 - Does not allow for manual curation
 of training data
 - Training on labeled GAN images results in lower quality labels [2]

We want a method that uses *existing annotations* ...

- Enables more complex label generation (e.g., continuous values)
- No associated start up cost for labeling infrastructure
- ... of real images
- Unlocks a larger pool of candidates for training images
- Higher quality training images leads to better labels

GAN inversion: connecting real labeled images to dataset generation

Given a pre-trained generator G and a similarity-based loss \mathscr{L} (e.g., LPIPS)

Encoder-based

Train an encoder to minimize similarity-based loss

Optimization-based

Directly optimize similarity-based loss

The HandsOff Framework

(1) Train label generator with existing labeled images

Synthesized Labels

10

Synthesized Labels

	-	
Car-Parts	Generated Image	
	Generated Seg. Mask	
Cityscapes	Generated Image	
	Generated Seg. Mask	
	Generated Depth	

How do we evaluate the quality of our synthetic data?

A numerical measure of dataset quality:

- Train a downstream network on the synthesized data
- Evaluate trained downstream network on real labeled test images
 - Segmentation: mean Intersection-over-Union (mIOU, \uparrow)
 - Keypoints: Percentage of Correct Keypoints (PCK, 1)
 - Depth: Mean Squared Error (MSE, \downarrow)

Area of Overlap IOU =Area of Union

Segmentation Mask Quality

	# labeled images	CelebAMask-HQ 8 classes	Car-Parts 10 train	DeepFashion-MM 8 classes	DeepFashion-MM 10 classes	Cityscapes 8 classes
DatasetGAN	16	0.7013	×	×	×	×
EditGAN	16	0.7244	0.6023	×	×	×
Transfer Learning	16	0.4575	0.3232	0.5192	0.4564	0.4954
HandsOff (Ours)	16	0.7814	0.6222	0.6094	0.4989	0.5510
Transfer Learning	50	0.6197	0.4802	0.6213	0.5559	0.5745
HandsOff (Ours)	50	0.7859	0.6679	0.6840	0.5565	0.6047

Segmentation performance measured in mIOU

Keypoint and Depth Map Quality

	# labeled	CelebAMask-HQ			DeepFashion-MM			Cityscapes-Depth		
	images	PCK-0.1 ↑	PCK-0.05 ↑	PCK-0.02 ↑	PCK-0 .1 ↑	PCK-0.05 ↑	PCK-0.02 ↑	mNMSE \downarrow	$\mathbf{RMSE}\downarrow$	$\textbf{RMSE-log} \downarrow$
Transfer Learning	16	78.96	42.06	7.32	91.24	83.52	48.21	0.4022	18.12	2.75
HandsOff (Ours)	16	97.19	76.36	17.44	94.19	88.48	70.22	0.2553	14.52	1.64
Transfer Learning	50	90.88	61.75	12.30	91.24	83.52	48.20	0.2525	15.07	3.01
HandsOff (Ours)	50	97.71	79.99	19.10	95.41	90.89	74.02	0.1967	13.01	1.58

Thank you! Questions?

- Contact: <u>axu@gatech.edu</u>
- Website: <u>austinxu87.github.io/handsoff</u>