CREPE: Can Vision-Language Foundation Models Reason Compositionally?

Zixian Ma¹*, Jerry Hong¹*, Mustafa Omer Gul²*, Mona Gandhi³, Irena Gao¹, Ranjay Krishna⁴

Stanford University¹, Cornell University², University of Pennsylvania³, University of Washington⁴

★ HIGHLIGHT @WED-AM-255

Compositionality

Compositionality enables human understanding of complex language

Compositionality enables human understanding of complex language and visual scenes.

Compositionality enables human understanding of complex language and visual scenes.

CREPE measures two aspects of compositionality:

CREPE measures two aspects of compositionality: **systematicity** and productivity.

Seen compositions

A yellow **vase** on top of a black television

Tennis players wearing **pink** t-shirts

Unseen test composition

White and purple flowers in a **pink vase**

CREPE measures two aspects of compositionality: systematicity and **productivity**.

Complexity	Caption		
n=4	A yellow vase on top of a television		
n=5	A yellow vase on top of a black television		
n=7	Plant inside a yellow vase on top of a black television		
n=10	Plant inside a yellow vase on top of a black television in front of an old computer		

We generate large-scale datasets of image-caption pairs and hard negative captions for image-to-text retrieval evaluation.

		Productivity		
Training dataset	CC-12M	YFCC-15M	LAION-400M	Any
Test set Image-caption pairs	385,777	385,777	373,703	17,553
Hard negative captions	325,523	316,668	309,342	183,855

We evaluate vision-language models across 7 architectures trained with 4 algorithms on massive datasets.

	Algorithm	Training dataset size	Architectures	
Systematicity, Productivity		12M	Transformer + [RN50]	
	CLIP	15M	Transformer + [RN50, RN101]	
		400M	Transformer + [ViT-B/32, ViT-B/16, ViT-B/16+240, ViT-L/14]	
Productivity	CyCLIP	3M	Transformer + [RN50]	
	FLAVA	14M	ViT-B/16 + ViT-B/16 + multimodal ViT	
	ALBEF	70M	BERTbase + ViT-B/16 + multimodal BERTbase	
	CLIP	400M	Transformer + [RN50, RN101, ViT-B/32, ViT-B/16, ViT-L/14]	

- 1. State-of-the-art vision-language models do NOT exhibit systematicity or productivity;
- 2. Neither emerges as we scale up the training dataset or model size.

- 1. State-of-the-art vision-language models do NOT exhibit systematicity or productivity;
- 2. Neither emerges as we scale up the training dataset or model size.

CREPE: Can Vision-Language Foundation Models Reason Compositionally?

Zixian Ma¹*, Jerry Hong¹*, Mustafa Omer Gul²*, Mona Gandhi³, Irena Gao¹, Ranjay Krishna⁴

Stanford University¹, Cornell University², University of Pennsylvania³, University of Washington⁴

★ HIGHLIGHT @WED-AM-255

Large-scale benchmarks for vision-language compositionality needed

Winoground

(a) some plants surrounding a lightbulb

(b) a lightbulb surrounding some plants

Images drawn from:

[1] Parcalabescu et al. VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena. 2021

[2] Thrush et al. Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality. 2022.

We introduce CREPE: a benchmark to evaluate whether vision-language models exhibit compositionality

Systematicity measures generalization to novel compositions

Seen compositions

A yellow **vase** on top of a black television

Tennis players wearing **pink** t-shirts

Systematicity measures generalization to novel compositions

Seen compositions

A yellow **vase** on top of a black television

Tennis players wearing **pink** t-shirts

Unseen test composition

White and purple flowers in a **pink vase**

Productivity measures understanding of increasingly complex captions

Complexity

n=4

n=7

n=10

Caption

A yellow vase on top of a television

n=5 A yellow vase on top of a black television

Plant inside a yellow vase on top of a black television

Plant inside a yellow vase on top of a black television in front of an old computer

CREPE evaluates models in both settings with image-to-text retrieval

- A yellow vase on top of a television
- Negative caption 1
- Negative caption 2
- × Negative caption 3
- Negative caption 4

Randomly selecting negative captions introduces noise to evaluation

- ✓ A yellow vase on top of a television
- × A black dog catching a frisbee
- Smiling man wearing sunglasses
- A tabby cat sleeping on a computer
- × A red car next to a streetlight

Randomly selecting negative captions introduces noise to evaluation

- A black dog catching a frisbee
- 🗵 Smiling man wearing sunglasses
- 😣 A tabby cat sleeping on a computer
- 🗵 A red car next to a streetlight

CREPE uses hard-negatives to detect particular error modes

- A yellow vase on top of a television
- × A red vase on top of a television
- × A yellow vase on top of a **table**
- A television on top of a yellow vase
- × A yellow vase **next to** a television

Making and Evaluating CREPE

At a glance

Training set

JMPOUNDS

palm tree with flowers • camera around his neck • trees line the sidewalk • starin...

Boats on a skillet • HN-ATOM Caption

Crepe below a table and egg on a skillet © HN-COMP Caption

Evaluation dataset

For a given complexity and hard negative type,

 $n = 7 \cdot \text{swap negatives}$

Image-scene graph pair

For a given complexity and hard negative type,

 $n = 7 \cdot \text{swap negatives}$

For a given complexity and hard negative type,

 $n = 7 \cdot \text{swap negatives}$

2: Generate a caption from subgraph. For *n=8*, we'll use a GPT prompt to do so..

Plant inside yellow vase on top of black television.

For a given complexity and hard negative type,

 $n = 7 \cdot \text{swap negatives}$

3: Generate all the hard negatives.

Plant inside yellow vase on top of black television.

×

Vase inside yellow plant on top of black television.

Plant inside yellow television on top of black vase.

Plant inside black vase on top of... yellow television.

Television inside of yellow vase on top of black plant.

•••

Horse inside yellow vase on top of black television. • HN-ATOM Caption

Plant inside black vase on top of yellow television. • HN-Swap Caption

Data Verification

Two human annotators verified a subset of the ground truth and hard negative captions we generated for our evaluation datasets.

Ground truth captions	Productivity	Hard negative captions	Systematicity	Productivity
Accuracy to image	87.9%	Genuine negative (incorrect statement about image)	86.0%	83.7%
Pairwise annotator agreement	88.8%	Pairwise annotator agreement	83.7%	84.3%

Experimental Setup

Datasets used

Visual Genome

The raw material; used to create the actual image-text pairs in the datasets.

CC-12M, YFCC-15M, and LAION-400M

Training sets used to determine the splits of CREPE-Systematicity. Each training set above results in a different three-way split of the same captions. We construct new **large-scale datasets for image-to-text retrieval** evaluation by leveraging Visual Genome's scene graphs.

	Systematicity			Productivity
Training dataset	CC-12M	YFCC-15M	LAION-400M	Any
Number of <u>ground-truth</u> <u>image-text pairs</u> in the test set	385,777	385,777	373,703	17,553
Number of <u>hard negative texts</u> in the test set	325,523	316,668	309,342	183,855

Retrieval metrics

 $\overset{\text{R@1}}{\rightarrow} 32.1\%$

Models evaluated

Systematicity

A variety of **OpenCLIP's CLIP** models:

- trained on: CC12M, YFCC15M or LAION-400M,
- 6 different backbones total.

Productivity

We don't require knowledge of the models' training sets. Therefore:

- OpenCLIP models used for systematicity, plus
- OpenAl's CLIP, CyCLIP, ALBEF, and FLAVA.

Systematicity: Models' recall@1 decreases from the SC to UC split on the hard negatives test set with <u>HN-ATOM</u>, and <u>HN-ATOM + HN-COMP</u>.

Figure 4. We plot models' recall@1 on the Seen Compounds vs. Unseen Compounds split of the systematicity retrieval set with hard negatives HN-ATOM, HN-COMP and both types.

Systematicity: The drop is small for the CC-12M and YFCC-15M trained models and the most pronounced for LAION-400M-trained models.

Figure 4. We plot models' recall@1 on the Seen Compounds vs. Unseen Compounds split of the systematicity retrieval set with hard negatives HN-ATOM, HN-COMP and both types.

Systematicity: We find little to no difference in models' performance between the SC and UC split on the <u>HN-COMP</u> subset.

Figure 4. We plot models' recall@1 on the Seen Compounds vs. Unseen Compounds split of the systematicity retrieval set with hard negatives HN-ATOM, HN-COMP and both types.

Productivity: <u>OpenCLIP</u> models' R@1 drops to random chance or below as complexity increases, particularly on the HN-ATOM and HN-SWAP sets.

Figure 5. We plot models' recall@1 on the hard negatives retrieval set against complexity, averaged across all models pretrained on all three training datasets.

Productivity: <u>OpenCLIP</u> models' R@1 drops to random chance or below as complexity increases, particularly on the HN-ATOM and HN-SWAP sets.

Figure 5. We plot models' recall@1 on the hard negatives retrieval set against complexity, averaged across all models pretrained on all three training datasets.

Productivity: <u>Other VL models</u> also demonstrate low performance and a downward trend as complexity increases, except for OpenAI CLIP models.

Figure 5. We plot models' recall@1 on the hard negatives retrieval set against complexity, averaged across all models pretrained on all three training datasets.

Productivity: <u>Other VL models</u> also demonstrate low performance and a downward trend as complexity increases, except for OpenAI CLIP models.

Figure 5. We plot models' recall@1 on the hard negatives retrieval set against complexity, averaged across all models pretrained on all three training datasets.

Systematicity and Productivity: We find no particular trends relating compositionality to training dataset size or model size.

Figure 6. We plot models' recall@1 on the Seen Compounds vs. Unseen Compounds split of the systematicity retrieval set with hard negatives HN-ATOM, HN-COMP and both types, where the dot size represents model size.

Systematicity and Productivity: We find no particular trends relating compositionality to training <u>dataset size</u> or model size.

Figure 5. We plot models' recall@1 on the hard negatives retrieval set against complexity, averaged across all models pretrained on all three training datasets.

Systematicity and Productivity: We find no particular trends relating compositionality to training dataset size or <u>model size</u>.

Figure 7. We plot the recall@1 of the four LAION-400M trained models of different sizes on the three hard negatives retrieval sets across complexities.

CREPE: Can Vision-Language Foundation Models Reason Compositionally?

No, state-of-the-art vision-language models do NOT exhibit systematicity or productivity, and compositionality is NOT likely to emerge as we scale up the training dataset or model size.

For more details, please refer to our paper from the QR code.

Code: <u>https://github.com/RAIVNLab/CREPE.git</u>

Contact: zixianma@cs.stanford.edu, jerryhong@cs.stanford.edu, mog29@cornell.edu

Backup slides

Results

Systematicity and Productivity: Zero-shot ImageNet accuracy strongly correlates with models' Recall@1 on the HN sets, except for HN-SWAP.

We introduce a CREPE: a benchmark to evaluate whether vision-language models exhibit compositionality

CREPE makes three major contributions:

2. We generate a large quantity of hard negative captions to support evaluation.

	Systematicity			Productivity
Training dataset	CC-12M	YFCC-15M	LAION-400M	Any
Number of <u>hard negative texts</u> in the test set	325,523	316,668	309,342	183,855

1. **Systematicity**: Models' retrieval recall decreases when the compositions in the image are unseen.

- 1. Systematicity: Models' retrieval recall decreases when the compositions in the image are unseen.
- 2. **Systematicity**: The decrease is largest **12%** for models trained on the largest dataset LAION-400M.

- 1. Systematicity: Models' retrieval recall decreases when the compositions in the image are unseen.
- 2. Systematicity: The decrease is largest 12% for models trained on the largest dataset LAION-400M.
- 3. **Productivity**: Models' retrieval recall drops to **random chance or below** as caption complexity increases.

- 1. Systematicity: Models' retrieval recall decreases when the compositions in the image are unseen.
- 2. Systematicity: The decrease is largest 12% for models trained on the largest dataset LAION-400M.
- 3. Productivity: Models' retrieval recall drops to random chance or below as caption complexity increases.
- 4. **Both**: We find no particular trends relating **training dataset or model size** to models' performance on our test sets.