CVPR 2023 paper : Recognizing rigid patterns of unlabeled point clouds by complete and continuous isometry invariants with no false negatives and no false positives for all data.

Authors: Daniel Widdowson, Vitaliy Kurlin. Materials Innovation Factory, Liverpool, UK applied
geometry Geometric data

topological	gata Science
data analysis	deep learning
deen	
applied topology, machine learning	

A cloud consists of m unlabeled points in \mathbb{R}^{n}, or in a metric space (given by pairwise distances).

An isometry is any map preserving inter-point distances. In any Euclidean \mathbb{R}^{n}, all isometries are compositions of translations, rotations, and reflections, and form the Euclidean group $E(n)$.

If reflections are excluded, we get rigid motions that form the group $S E(n)$. The rigid pattern of a cloud C is its class under $S E(n)$ or $E(n)$.

Isometry problem for clouds

Design an invariant I : \{isometry classes of clouds in $\left.\mathbb{R}^{n}\right\} \rightarrow\{$ a simpler space $\}$ satisfying
completeness: any clouds A, B are isometric if and only if $I(A)=I(B)$, so I is a DNA-style code with no false negatives and no false positives; Lipschitz continuity : there is a constant λ, if any point of A is perturbed up to ε, then $I(A)$ changes by at most $\lambda \varepsilon$ in a metric d such that $d(I(A), I(B))=0 \Leftrightarrow A, B$ are isometric, $d(I(A), I(B))=d(I(B), I(A)), d_{1}+d_{2} \geq d_{3}$.

Labeled vs unlabeled points in \mathbb{R}^{n}

 If all m points of a cloud $C \subset \mathbb{R}^{n}$ are labeled p_{1}, \ldots, p_{m}, then C is reconstructed (uniquely up to isometry) from the distances $d_{i j}=\left|p_{i}-p_{j}\right|$. If m points are unlabeled, C can be uniquely represented by m ! distance matrices obtained by m ! permutations of points, it's impractical.The isometry problem has one more condition computability: the invariant $/$ and the metric d are computable in a polynomial time in the number m of points for a fixed dimension n.

Generically complete invariants

Geometric Deep Learning (GDL) trains neural networks to output isometry invariants but without proofs of completeness and continuity while ignoring the known geometric invariants.

Boutin, Kemper, 2004: the vector of all sorted pairwise distances is generically complete in \mathbb{R}^{n} distinguishing almost all clouds of unlabeled points except singular examples. We extend this invariant instead of trying to reinvent the wheel.

Pointwise Distance Distributions

For a set S of m points p_{1}, \ldots, p_{m} in a metric space, choose any number $1 \leq k<m$ of neighbors and build the $m \times k$ matrix $D(S ; k)$.

Collapse identical rows and assign weights. The matrices PDDs are continuously compared by
Earth Mover's Distance (EMD), NeurIPS 2022.

Invariants stronger than PDD

 Conjecture: PDD is complete for clouds in \mathbb{R}^{2}.PDD is not complete for some clouds in \mathbb{R}^{3}, but the stronger invariants below distinguish them.
strongest isometry invariants SDD
Simplexwise Distance Distribution
Theorem 3.10
fast metrics on invariants SDM Simplexwise Distance Moments
\uparrow in any metric space
complete isometry invariants SCD Simplexwise Centered Distribution
Theorem 4.4 个 Theorem 4.7
fast metrics on invariants CDM
Centered Distance Moments
in any Euclidean space

Simplest isometry invariant SDV Sorted Distance Vector

Relative Distance Distribution

Let C be a cloud of m unlabeled points in a metric space. $\operatorname{SDD}(C ; h)$ for $h=1$ is $\operatorname{PDD}(C)$.
Any sequence $A \subset C$ of h points has the matrix $\operatorname{RDD}(C ; A)$ with $m-h$ permutable columns of distances from $q \in C-A$ to all points of A.

$$
\begin{aligned}
& \text { The Relative Distance Distribution for } \\
& \left.p_{2}=\binom{c}{p_{3}}\right] \text { is } \operatorname{RDD}(C ; A)=\left[a ;\binom{c}{b}\right] \\
& \operatorname{RDD}\left(C ;\binom{p_{3}}{p_{1}}\right)=\left[b ;\binom{a}{c}\right], \operatorname{RDD}\left(C ;\binom{p_{1}}{p_{2}}\right)=\left[c ;\binom{b}{a}\right]
\end{aligned}
$$

Simplexwise Distance Distribution

Classes of these RDD pairs with the distance matrix of A (up to permutations of points in A) for all h-point unordered subsets $A \subset C$ form $\operatorname{SDD}(C ; h)$. For $h=2$, the stronger invariant $\operatorname{SDD}(C ; 2)$ distinguished all counter-examples in \mathbb{R}^{3} to the completeness of past invariants.

Theorem 3.10: for any m-point cloud C in a metric space, $\operatorname{SDD}(C ; h)$ is computable in time $O\left(m^{h+1} /(h-1)!\right)$ and has Lipschitz constant 2 in EMD, time $O\left(h!\left(h^{2}+m^{1.5} \log ^{h} m\right) l^{2}+l^{3} \log l\right)$.

Simplexwise Centered Distribution

 In \mathbb{R}^{n}, fix the center of a cloud C at $p_{0}=0 \in \mathbb{R}^{n}$. For any ordered subset $A=\left(p_{1}, \ldots, p_{n-1}\right) \subset C$, $\operatorname{OCD}(C ; A)$ is the pair of the distance matrix $D(A)$ and matrix M with $m-n+1$ permutable columns of n distances $\left|q-p_{i}\right|$ for $q \in C-A$.To reconstruct $C \subset \mathbb{R}^{n}$ up to rigid motion, we add the sign of the determinant on the vectors from each $q \in C-A$ to the points p_{0}, \ldots, p_{n-1}.
$\operatorname{SCD}(C)$ is the unodered set of classes of
$\operatorname{OCD}(C ; A)$ for all $(n-1)$-point subsets $A \subset C$.
$\sqrt{2}, \AA^{R_{1}}{ }^{p_{3}} \quad$ For each 1-point subset $A=\{p\} \subset S$, the distance matrix $D(A \cup\{0\})$ on two points S is one number 1 . Then $M(S ; A \cup\{0\})$ has $m-n+1=3$ columns. For $p_{1}=(1,0)$, we have $M\left(S ;\binom{p_{1}}{0}\right)=\left(\begin{array}{ccc}\sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & + & 0\end{array}\right)$, whose three
columns are ordered as p_{2}, p_{3}, p_{4}. The sign in the bottom right corner is 0 because $p_{1}, 0, p_{4}$ are in a straight line. By the rotational symmetry,
$\operatorname{SCD}(S)$ is one $\mathrm{OCD}=\left[1,\left(\begin{array}{ccc}\sqrt{2} & \sqrt{2} & 2 \\ 1 & 1 & 1 \\ - & 0\end{array}\right)\right]$.

The strength $\sigma(B)$ of a simplex B

The discontinuity of a sign in degenerate cases such as 3 points in a line is resolved by the new strength of a simplex $\sigma(B)=V^{2} / p^{2 n-1}$, where V is the volume, p is the half-perimeter of B.

The strength of a triangle $B \subset \mathbb{R}^{2}$ with sides a, b, c is $\sigma(B)=\frac{(p-a)(p-b)(p-c)}{p^{2}}$, which is 'roughly linear' unlike the 'quadratic' area of B.

Theorem 4.4: in \mathbb{R}^{n}, the strength σ is Lipschitz continuous with constants $c_{2}=2 \sqrt{3}, c_{3} \approx 0.43$.

Complete invariant SCD in \mathbb{R}^{n}

Theorem 4.7: for any cloud C of m unlabeled points in \mathbb{R}^{n}, the Simplexwise Centered Distribution $\operatorname{SCD}(C)$ is a complete invariant under rigid motion, and is computable in time $O\left(m^{n} /(n-4)!\right)$, has Lipschitz constant 2 in the Earth Mover's Distance (EMD), computable in time $O\left((n-1)!\left(n^{2}+m^{1.5} \log ^{n} m\right) I^{2}+l^{3} \log l\right)$, l is the number of different OCDs in SCDs.

The complete isometry invariant is the pair of $\operatorname{SCD}(C)$ and $\overline{\mathrm{SCD}}(C)$ with reversed signs.

Geometric Data Science

The major breakthroughs are the continuous isometry classifications for discrete point sets: finite (CVPR 2023), periodic (NeurIPS 2022).

Geometric Data Science

 continuous metrics on spaces of data objects modulo equivalence * \longmapsto + isometry classification of finite point cloudsCrystal Isometry Space of all periodic crystals
metric

