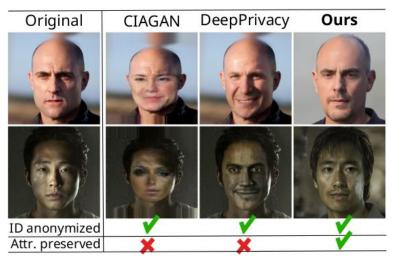
Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization

Simone Barattin^{*1}, Christos Tzelepis^{*2}, Ioannis Patras¹, and Nicu Sebe¹ ¹University of Trento, ²Queen Mary University of London

(* denotes equal contribution) - TUE-PM-371



Goal of the work

- Anonymize the identity of face images
- Maintain the original face attributes

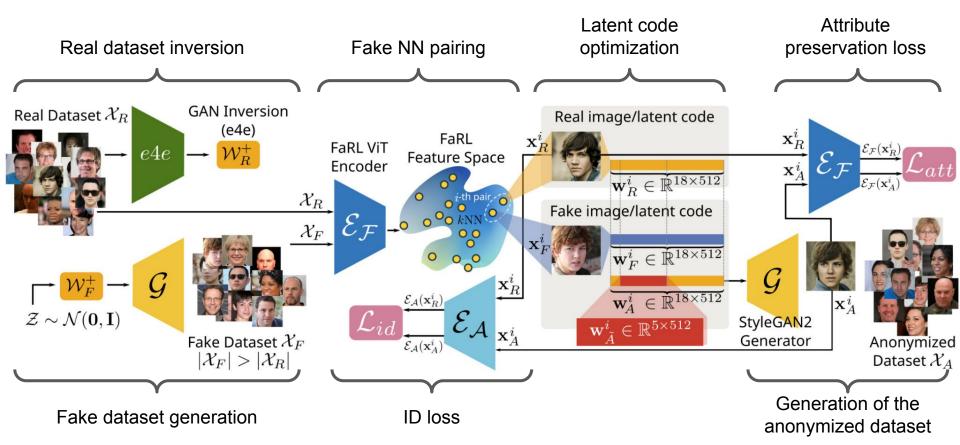
Background

Face obfuscation

- Naive masking methods [1]
- *k*-Same algorithm [2]

- Generative face anonymization
 - CIAGAN [3]
 - DeepPrivacy [4]

DeepPrivacy [4]

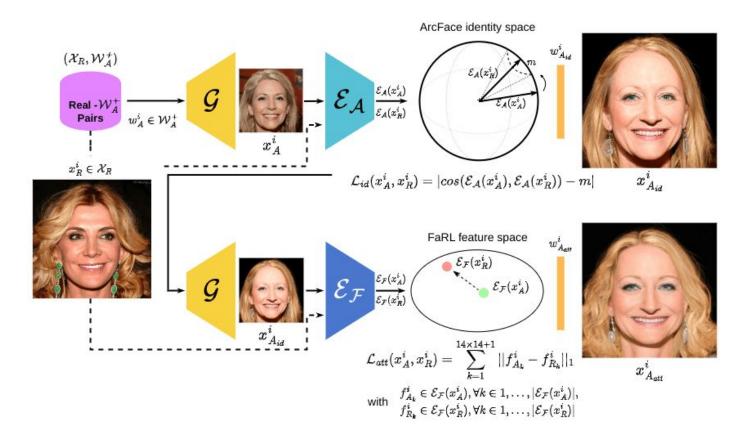

[1] Datong Chen, Yi Chang, Rong Yan, and Jie Yang. "Tools for protecting the privacy of specific individuals in video.", EURASIP 2007
 [2] Elaine M Newton, Latanya Sweeney, and Bradley Malin. "Preserving privacy by de-identifying face images.", IEEE TKDE 2005
 [3] Maxim Maximov, Ismail Elezi, and Laura Leal-Taixé. "CIAGAN: Conditional identity anonymization generative adversarial networks", CVPR 2020
 [4] Hukkelås, Håkon, Rudolf Mester, and Frank Lindseth. "DeepPrivacy: A generative adversarial network for face anonymization.", ISVC 2019

Background

Challenges and proposed solution

- Costly and unstable training of additional neural networks
- Facial attributes and expression are not preserved
- Use only pre-trained models
 - Greatly reduces the computational cost
- Use a novel loss to retain fine-grained facial details
 - Meanwhile the identity is changed

Pipeline overview


Anonymization process

- Proposed identity loss $\mathcal{L}_{id}(\mathbf{x}_A^i, \mathbf{x}_R^i) = \left|\cos\left(\mathcal{E}_{\mathcal{A}}(\mathbf{x}_A^i), \mathcal{E}_{\mathcal{A}}(\mathbf{x}_R^i)\right) m\right|$
 - \circ \mathcal{E}_{A} denotes the pre-trained ArcFace [1] encoder
 - Controls the similarity between the real and the anonymized faces via the hyperparameter *m*

- Proposed attribute preservation loss $\mathcal{L}_{att}(\mathbf{x}_A^i, \mathbf{x}_R^i) = \left\| \mathcal{E}_{\mathcal{F}}(\mathbf{x}_A^i) \mathcal{E}_{\mathcal{F}}(\mathbf{x}_R^i) \right\|_1$
 - \mathcal{E}_{F} denotes the pre-trained FaRL [2] visual encoder (ViT-based)
 - Imposes the preservation of the real images' facial features on the anonymized ones

[1] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Cotsia, and Stefanos P Zafeiriou. "ArcFace: Additive angular margin loss for deep face recognition.", PAMI 2021
[2] Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dong-dong Chen, Yangyu Huang, Lu Yuan, Dong Chen, Ming Zeng, and Fang Wen. "General facial representation learning in a visual-linguistic manner", CVPR 2021

Anonymization process

Experiments

Datasets

- CelebA-HQ [1]
 - 30000 frontal-face images
 - 40 facial attribute annotations
 - Test the ability of the method to anonymize high quality images

- Labelled Faces in the Wild (LFW) [2]
 - 13000 in-the-wild images
 - No facial attribute annotation is provided
 - Test the ability of the method to anonymize images in-the-wild

[1] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. "Deep learning face attributes in the wild.", ICCV 2015

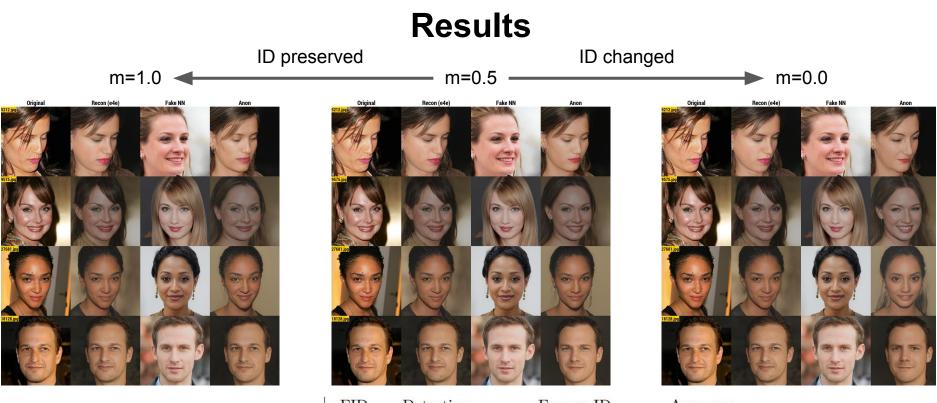
[2] Huang, Gary B., et al. "Labeled faces in the wild: A database for studying face recognition in unconstrained environments." Workshop on faces in 'Real-Life' Images: detection, alignment, and recognition. 2008.

• Image quality evaluation

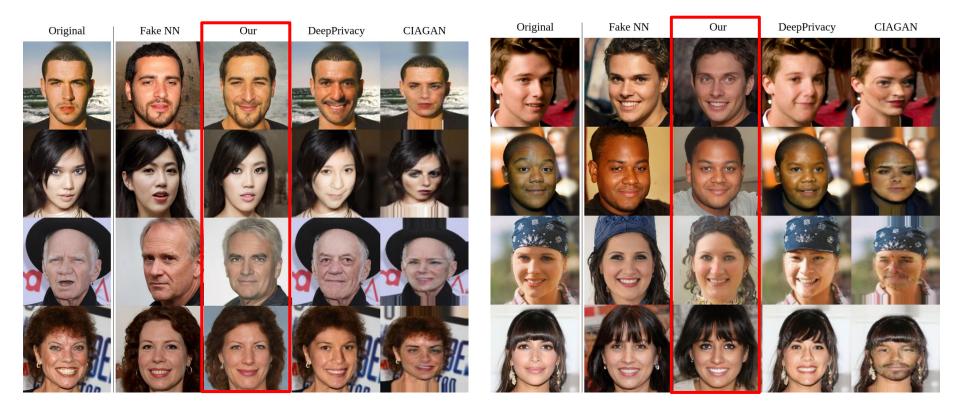
- Fréchet Inception Distance (FID)
- Face detection rate (MTCNN, dlib)

	FID↓	Detection [↑]		Face re-ID↓	
		dlib(%)	MTCNN(%)	CASIA(%)	VGG(%)
Randomly generated	18,09	100	99.99	3.61	1.08
CIAGAN [35]	37,94	95.10	99.82	2.19	0.37
DeepPrivacy [21]	32.99	98.82	99.85	3.61	1.05
Our (ID)	44.12	98,58	97.99	3.28	0.58
Our (ID+attributes)	44.11	100	100	3.06	2.06
Our	29.93	100	100	2.80	1.67

- Face de-identification evaluation
 - Face re-identification


	FID↓	FID (C-HQ) \downarrow	Detection↑		Face re-ID↓	
			dlib(%)	MTCNN(%)	CASIA(%)	VGG(%)
CIAGAN [35]	22.07	85.23	98.14	99.89	0.17	0.91
DeepPrivacy [21]	23.46	123.67	96.7	99.57	2.74	1.52
Our	27.45	68.88	100	100	2.07	1.58

- Attribute preservation evaluation
 - Attribute classification approach
 - Accuracy of the trained classifier


	Inner face	Outer face	Combined
Original	0.8409	0.8683	0.8539
CIAGAN[35]	0.7277	0.8372	0.7852
DeepPrivacy[21]	0.7658	0.8511	0.8135
Our	0.7817	0.8518	0.8181

- Use pseudo-labels for LFW
 - Two pre-trained attribute classifiers
 - Lin et al. [30] predicts CelebA-HQ's attributes
 - Jiang et al. [22] predicts 5 facial attributes

	CelebA-HQ (labels from $[30]$)	LFW (labels from $[30]$)	LFW (labels from $[22]$)
CIAGAN [35]	0.7721	0.9143	0.7045
DeepPrivacy [21]	0.7902	0.9133	0.7019
Our	0.8215	0.9157	0.7209

	FID	Detection	Face re-ID		Accuracy
		MTCNN(%)	CASIA(%)	VGG(%)	
Our (m=0.0)	29.93	100	2.80	1.67	0.8181
Our (m=0.9)	27.58	100	3.41	1.76	0.83

Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization

Simone Barattin^{*1}, Christos Tzelepis^{*2}, Ioannis Patras¹, and Nicu Sebe¹ ¹University of Trento, ²Queen Mary University of London

(* denotes equal contribution)

Code: https://github.com/chi0tzp/FALCO

