Improving Robustness of Semantic Segmentation to Motion-Blur Using Class-Centric Augmentation

Aakanksha , Rajagopalan A. N. Image Processing and Computer Vision (IPCV) Lab Indian Institute of Technology Madras

Overview:

Input Blurred Image

Standard Semantic Segmentation Network

Predicted Segmentation Map

Input Blurred Image

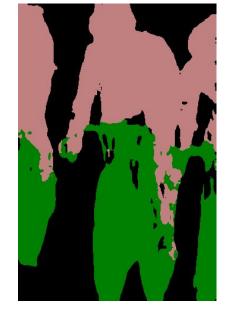
Semantic Segmentation Network trained with our augmentation

Predicted Segmentation Map

Semantic Segmentation:

• Classify each pixel to a class from a set of object/stuff classes

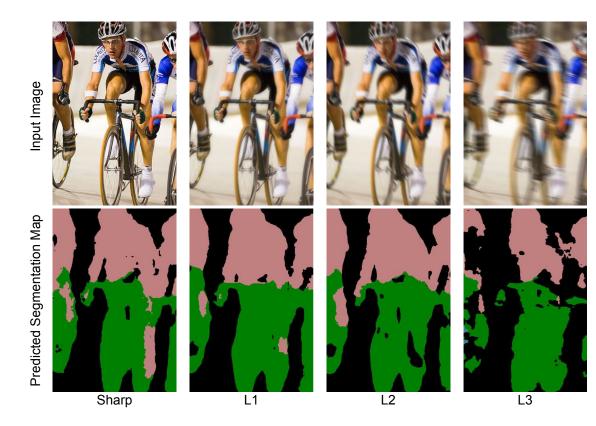
Input Image



Predicted Segmentation Map

Ground Truth Segmentation Map

Robustness of Semantic Segmentation:



Ground Truth Segmentation Map

** Note that blur severity increases from L1 to L3

Related Works:

• Investigating the impact of blur on performance [1]

• Benchmarking robustness to common corruptions and perturbations [2,3]

• Increasing robustness to generic common corruptions and perturbations [4]

Igor Vasiljevic, Ayan Chakrabarti, and Gregory Shakhnarovich. Examining the impact of blur on recognition by convolutional networks. arXiv preprint arXiv:1611.05760, 2016. 3
Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. Proceedings of the International Conference on Learning Representations. 2019.

[3] Christoph Kamann and Carsten Rother. Benchmarking the robustness of semantic segmentation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8828–8838, 2020.

[4] Christoph Kamann and Carsten Rother. Increasing the robustness of semantic segmentation models with painting-by-numbers. In European Conference on Computer Vision, pages 369–387. Springer, 2020.

5

Key Idea:

• Motion blur is common and unavoidable and causes performance drop

• Motion blur is diverse and challenging

• Augment training images with synthetic motion-blurred images (comprising the entire spectrum from dynamic scenes to camera-shake blur) to improve robustness to motion-blur in semantic segmentation

Generating synthetic motion-blur:

- GANs more realistic but offer no control or interpretability
- Motion-blur kernels can be used along with ground truth segmentation maps to generate synthetic dynamic-scene motion-blur

Sharp Image

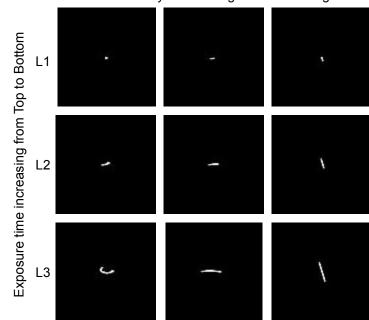
GT Segmentation Map

Synthetic dynamic-scene blur

Blur Kernel Generation:

- Diverse blur kernels are generated [5] by varying -
 - (a) non-linearity of the camera trajectory, and
 - (b) exposure time of the camera

 Increased exposure time leads to more severe blur. So, L1 corresponds to lowest blur and lowest exposure time while L3 corresponds to the highest.



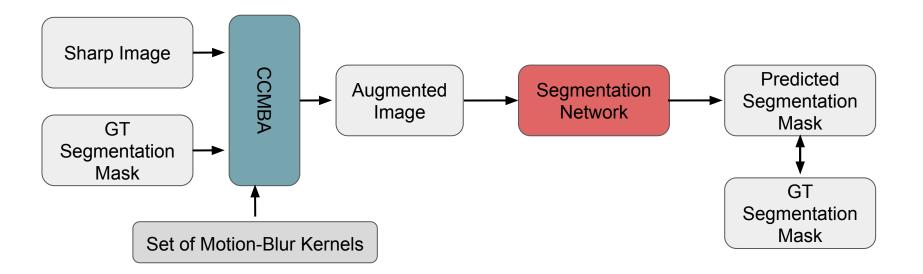
Non-Linearity Decreasing from Left to Right

** Note that the shown blur kernels are enlarged for better visibility.

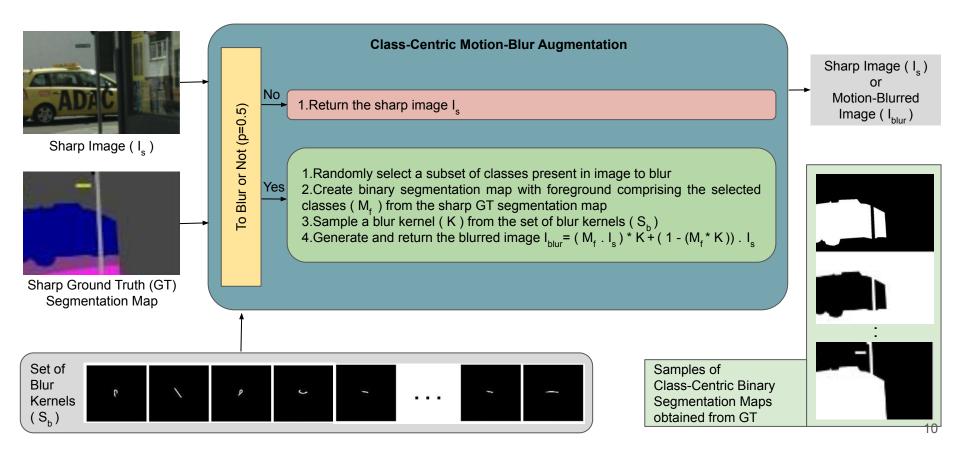
[5] Giacomo Boracchi and Alessandro Foi. Modeling the performance of image restoration from motion blur. IEEE Transactions on Image Processing, 21(8):3502–3517, 2012.

Outline of Our Approach:

• Our approach is class-centric motion blur augmentation (CCMBA)



Class-Centric Motion Blur Augmentation:



Samples of Augmented Image

Sharp Image

Only Airplane Blurred

Only Airplane Sharp

All Blurred

Sharp Image

Only Car Blurred

Only Car Sharp

All Blurred

Baseline Methods :

• No Retraining - to check pre-trained models's robustness to blur

• *Deblurring* - to check the effectiveness of deblurring as a pre-processing step

• *Finetuning* - to enable the network to learn the slight domain shift

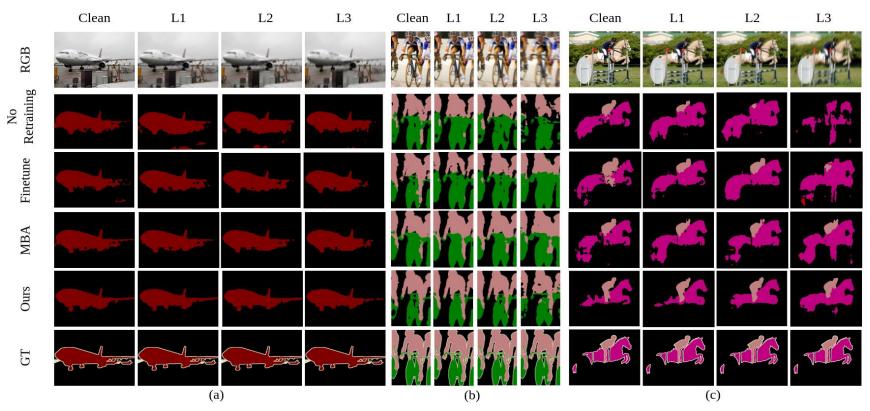
• *Motion Blur Augmentation (MBA)* - to compare space invariant blur augmentation with our class-centric space-variant blur augmentation

Results On Synthetic Generated Blur:

Method	VOC DeepLabv3+				Cityscapes							
					DeepLabv3+				Segformer			
	Clean	L1	L2	L3	Clean	L1	L2	L3	Clean	L1	L2	L3
No-Retraining	77.2	69.6	53.1	36.5	75.6	70.4	58.1	41.4	81.0	78.2	73.2	62.5
Deblurring	- 21	69.3	65.9	58.2	21	72.2	70.9	66.5	-	78.5	77.5	75.3
Finetuning	67.4	71.9	69.6	63.9	70.6	74.2	70.6	68.3	79.8	80.2	79.1	76.0
MBA	74.6	72.9	69.2	60.3	60.4	73.3	71.2	66.9	79.6	78.5	77.0	74.1
CCMBA (Ours)	76.5	74.6	72.1	66.0	76.2	75.6	73.6	70.4	81.1	80.2	78.7	76.0

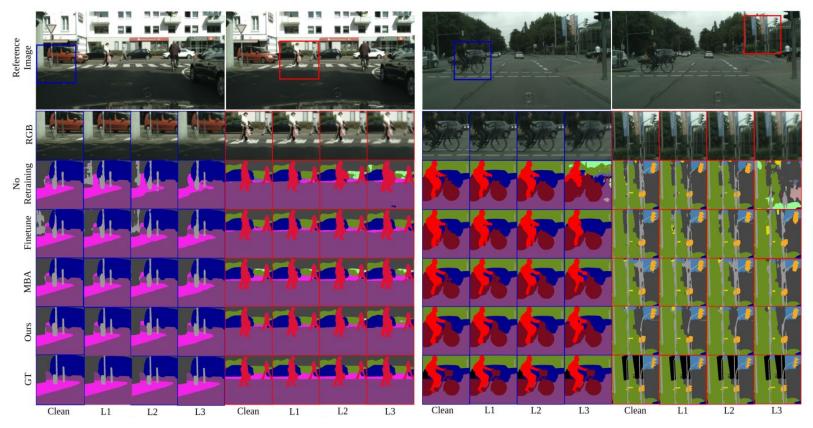
• Our augmentation improves the performance in the presence of blur while retaining the performance for clean/sharp images.

Results On Synthetically Generated Blur (VOC):



 More consistent results are obtained across clean and blurred data (with different severity levels) using our approach.

Results On Synthetically Generated Blur (Cityscapes):



• More consistent results are obtained across clean and blurred data (with different severity levels) using our approach.

Results On Cityscapes-C:

Method		DeepLa	abv3+		Segformer				
Wiethou	Clean	S1	S 2	S 3	Clean	S1	S 2	S 3	
No-Retraining	75.6	71.2	65.7	56.9	81.0	77.8	74.6	68.8	
Finetuning	70.6	72.4	70.4	68.1	79.8	78.0	76.0	73.1	
MBA	60.4	57.9	54.5	50.8	79.6	77.4	75.3	71.9	
PbN [6]	76.1	72.3	68.7	63.2	-	-	-	-	
CCMBA (Ours)	76.2	74.0	72.3	68.9	81.1	77.7	75.9	72.3	

• Our augmentation improves the performance in the presence of blur while retaining the performance for clean/sharp images even on Cityscapes-C benchmark.

Results on Real Blur (GoPro and REDS):

• Our approach generalizes better to real blur as well and maintains better consistency across sharp and blur images when compared with baselines.

Conclusion

• An effective data augmentation scheme using ground truth segmentation maps and synthetic blur kernels was proposed for improving semantic segmentation robustness to motion blur.

• The class-centric nature of our augmentation enables it to perform well on real blur datasets like GoPro and REDS, especially for common classes like humans.

Thank You!