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Overview:
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Semantic Segmentation: 

● Classify each pixel to a class from a set of object/stuff classes

Input Image Predicted Segmentation Map Ground Truth 
Segmentation Map
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Robustness of Semantic Segmentation: 

Ground Truth 
Segmentation Map
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** Note that blur severity increases from L1 to L3
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● Investigating the impact of blur on performance [1]

● Benchmarking robustness to common corruptions and perturbations [2,3]

● Increasing robustness to generic common corruptions and perturbations [4]
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Key Idea:

● Motion blur is common and unavoidable and causes performance drop

● Motion blur is diverse and challenging

● Augment training images with synthetic motion-blurred images (comprising 
the entire spectrum from dynamic scenes to camera-shake blur) to improve 
robustness to motion-blur in semantic segmentation
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Generating synthetic motion-blur:

● GANs - more realistic but offer no control or interpretability
● Motion-blur kernels can be used along with ground truth segmentation maps 

to generate synthetic dynamic-scene motion-blur

Sharp Image GT Segmentation Map Synthetic dynamic-scene blur
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Blur Kernel Generation:

● Diverse blur kernels are generated [5] by 
varying - 
(a) non-linearity of the camera trajectory, 

and 
(b) exposure time of the camera

● Increased exposure time leads to more 
severe blur. So, L1 corresponds to lowest 
blur and lowest exposure time while L3 
corresponds to the highest.

** Note that the shown blur kernels are enlarged for better visibility.
[5] Giacomo Boracchi and Alessandro Foi. Modeling the performance of image restoration from motion blur. IEEE Transactions on Image Processing, 
21(8):3502–3517, 2012.
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● Our approach is class-centric motion blur augmentation (CCMBA)

Outline of Our Approach:
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Class-Centric Motion Blur Augmentation:

Set of 
Blur 
Kernels 
( Sb )

Sharp Image ( Is )

Sharp Ground Truth (GT) 
Segmentation Map

1.Return the sharp image Is 

Sharp Image ( Is )
or 

Motion-Blurred 
Image ( Iblur )

1.Randomly select a subset of classes present in image to blur
2.Create binary segmentation map with foreground comprising the selected 
classes ( Mf  ) from the sharp GT segmentation map
3.Sample a blur kernel ( K ) from the set of blur kernels ( Sb )
4.Generate and return the blurred image Iblur= ( Mf  . Is ) * K + ( 1 - (Mf * K )) .  Is
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Samples of Augmented Image

Sharp Image

Sharp Image Only Airplane Blurred
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Baseline Methods :

● No Retraining - to check pre-trained models’s robustness to blur

● Deblurring - to check the effectiveness of deblurring as a pre-processing step

● Finetuning - to enable the network to learn the slight domain shift

● Motion Blur Augmentation (MBA) - to compare space invariant blur 
augmentation with our class-centric space-variant blur augmentation
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Results On Synthetic Generated Blur:

● Our augmentation improves the performance in the presence of blur while retaining the performance 
for clean/sharp images.
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Results On Synthetically Generated Blur (VOC):

● More consistent results are obtained across clean and blurred data (with different severity levels) 
using our approach. 14



Results On Synthetically Generated Blur (Cityscapes):

● More consistent results are obtained across clean and blurred data (with different severity levels) 
using our approach. 15



Results On Cityscapes-C:

[6] Christoph Kamann and Carsten Rother. Increasing the robustness of semantic segmentation models with paintingby-numbers. In European 
Conference on Computer Vision, pages 369–387. Springer, 2020.

PbN [6]

● Our augmentation improves the performance in the presence of blur while retaining the performance 
for clean/sharp images even on Cityscapes-C benchmark.
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Results on Real Blur (GoPro and REDS):

● Our approach generalizes better to real blur as well and maintains better consistency across sharp 
and blur images when compared with baselines. 17



Conclusion 

● An effective data augmentation scheme using ground truth segmentation maps and 
synthetic blur kernels was proposed for improving semantic segmentation 
robustness to motion blur.

● The class-centric nature of our augmentation enables it to perform well on real blur 
datasets like GoPro and REDS, especially for common classes like humans.
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Thank You!
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