Instance-specific and Model-adaptive Supervision for Semi-supervised Semantic Segmentation

> Zhen Zhao, Sifan Long, Jimin Pi, Luping Zhou, Jingdong Wang

Brief Introduction Instance-specific and Model-adaptive Supervision (iMAS)

➤ A standard teacher-student framework:

- Quantitative hardness analysis: 1) unlabeled instance 2) model's training status
- > Hardness-based Model-adaptive supervision: 1) augmentations 2) unsupervised loss

Background and Motivation

> Proposed Method

> Experiments

➢ Conclusion

Background

>Why Semi-supervised Semantic Segmentation (SSS)?

- The success of supervised semantic segmentation depends closely on large datasets with high-quality pixel-level annotations.
- Delicate and dense pixel-level labelling is costly and time-consuming, which becomes a significant bottleneck in practical applications with limited labelled data.

> How recent SSS work? (leveraging the unlabeled data)

- Pseudo-labeling: Train on labeled data and then generate pseudo-labels on unlabeled data, iteratively adding high-confidence predicted unlabeled data to labeled set.
- Consistency regularization: Apply data or model perturbations and enforce the prediction consistency between two differently-perturbed views for unlabeled data.

Motivation

> Motivations:

- Weakness1: Despite their promising performance, recent SSS studies come at the cost of introducing extra network components or additional training procedures.
- ➢ Weakness2: Most existing studies treat all unlabeled data equally and barely consider the differences and training difficulties among unlabeled instances.
- ➤ We believe that differentiating unlabeled instances can promote instance-specific supervision to adapt to the model's evolution dynamically.

> Our Goal: instance-specific and model-adaptive supervision (iMAS)

- > all the operations on different unlabeled instances should
 - > adapt to the training status of the model
 - be adjusted based on their learning difficulties

Method

Instance-specific and Model-adaptive Supervision (iMAS)

A standard teacher-student framework:

- Quantitative hardness analysis: 1) unlabeled instance 2) model's training status
- ➢ Hardness-based Model-adaptive supervision: 1) augmentations 2) unsupervised loss

Method (cont.)

- Quantitative hardness analysis
 - A class-weighted teacher-student symmetric IoU.

$$\begin{split} p_i^s &= f_{\theta_s}(\mathcal{A}_w(u_i)), \quad \rho_i^s = \frac{1}{H \times W} \sum_{j=1}^{H \times W} \mathbb{1}(\max(p_i^s(j)) \geq \tau) \\ p_i^t &= f_{\theta_t}(\mathcal{A}_w(u_i)), \quad \rho_i^t = \frac{1}{H \times W} \sum_{j=1}^{H \times W} \mathbb{1}(\max(p_i^t(j)) \geq \tau), \\ \gamma_i &= \phi(p_i^t, p_i^s) = 1 - [\frac{\rho_i^s}{2} \text{wIOU}(p_i^s, p_i^t) + \frac{\rho_i^t}{2} \text{wIOU}(p_i^t, p_i^s)] \end{split}$$

Method (cont.)

- Model-adaptive supervision
 - Hardness-adaptive data perturbations:
 - Intensity-based augmentations

$$\mathcal{A}_{s}^{I}(u_{i}) \leftarrow \gamma_{i} \mathcal{A}_{s}^{I}(u_{i}) + (1 - \gamma_{i}) \mathcal{A}_{w}(u_{i})$$
(8)

• Cut-mix-based augmentations

$$\begin{array}{c} \mathcal{A}_{s}^{C}(u_{m}) \leftarrow M_{m} \odot u_{n} + (\mathbf{1} - M_{m}) \odot u_{m} \\ p_{m}^{t'} \leftarrow M_{m} \odot p_{n}^{t} + (\mathbf{1} - M_{m}) \odot p^{t}, \\ \mathcal{A}_{s}^{C}(u_{n}) \leftarrow M_{n} \odot u_{m} + (\mathbf{1} - M_{n}) \odot u_{n} \\ p_{n}^{t'} \leftarrow M_{n} \odot p_{m}^{t} + (\mathbf{1} - M_{n}) \odot p_{n}^{t} \end{array} \right\}, \text{ by a trigger probability of } \overline{\gamma} = \frac{1}{|\mathcal{B}_{u}|} \sum_{n=1}^{|\mathcal{B}_{u}|} \gamma_{n} \quad (9)$$

• Hardness-adaptive unsupervised loss:

$$\mathcal{L}_{u} = \frac{1}{|\mathcal{B}_{u}|} \sum_{i=1}^{|\mathcal{B}_{u}|} \frac{1 - \gamma_{i}}{2H \times W} \sum_{j=1}^{H \times W} [\mathbb{1}(\max(p_{i}^{t}(j)) \geq \tau) \mathrm{H}(f_{\theta_{s}}(\mathcal{A}_{s}^{I}(u_{i})), p_{i}^{t}(j)) + \\ \mathbb{1}(\max(p_{i}^{t'}(j)) \geq \tau) \mathrm{H}(f_{\theta_{s}}(\mathcal{A}_{s}^{C}(u_{i})), p_{i}^{t'}(j))].$$

$$(10)$$

Experiments: Comparison with SOTAs

Method		ResNet-50			ResNet-101	
Method	1/16 (662)	1/8 (1323)	1/4 (2646)	1/16 (662)	1/8 (1323)	1/4 (2646)
Supervised*	63.8	69.0	72.5	67.4	72.1	74.7
MT [39]	66.8	70.8	73.2	70.6	73.2	76.6
CCT [33]	65.2	70.9	73.4	68.0	73.0	76.2
CutMix-Seg [12]	68.9	70.7	72.5	72.6	72.7	74.3
GCT [22]	64.1	70.5	73.5	69.8	73.3	75.3
CAC [24]	70.1	72.4	74.0	72.4	74.6	76.3
CPS [7]	72.0	73.7	74.9	74.5	76.4	77.7
PSMT† [26]	72.8	75.7	76.4	75.5	78.2	78.7
ELN [23]	70.5	73.2	74.6	72.5	75.1	76.6
ST++ [45]	72.6	74.4	75.4	74.5	76.3	76.6
iMAS (ours)	74.8	76.5	77.0	76.5	77.9	78.1
U ² PL‡ [41]	72.0	75.2	76.2	74.4	77.6	78.7
iMAS (ours)‡	75.9	76.7	77.1	77.2	78.4	79.3

Method	1/16 (92)	1/8 (183)	1/4 (366)	1/2 (732)	Full (1464)
Supervised *	45.5	57.5	66.6	70.4	72.9
CutMix-Seg [12]	52.2	63.5	69.5	73.7	76.5
PseudoSeg [55]	57.6	65.5	69.1	72.4	73.2
$PC^2Seg[52]$	57.0	66.3	69.8	73.1	74.2
CPS [7]	64.1	67.4	71.7	75.9	-
PSMT [26]	65.8	69.6	76.6	78.4	80.0
ST++ [45]	65.2	71.0	74.6	77.3	79.1
iMAS (ours)	68.8	74.4	78.5	79.5	81.2
U ² PL‡ [41]	68.0	69.2	73.7	76.2	79.5
iMAS‡(ours)	70.0	75.3	79.1	80.2	82.0

Table 3. Comparison with SOTA methods on *classic* **PASCAL VOC 2012** val set under different partition protocols. Labeled images are sampled from the official VOC train set, including 1, 464 samples in total. Results are reported using Resnet-101. All notations are the same as in Table 2.

Table 2. Comparison with SOTA methods on **PASCAL VOC 2012** val set under different partition protocols. Labeled images are sampled from the *blender* training set (augmented by SBD dataset), including 10,583 samples in total. \ddagger means the results are obtained by setting the output_stride as 8 in DeepLabV3+ (16 for others). * denotes our reproduced results. Best results are highlighted in **bold**.

Experiments (Cont.)

Method	1/16 (186)	1/8 (372)	1/4 (744)	1/2 (1488)
Supervised *	64.0	69.2	73.0	76.4
MT [39]	66.1	72.0	74.5	77.4
CCT [33]	66.4	72.5	75.7	76.8
GCT [22]	65.8	71.3	75.3	77.1
CPS [7]	74.4	76.6	77.8	78.8
CPS† [41]	69.8	74.3	74.6	76.8
PSMT [26]	-	75.8	76.9	77.6
ELN [23]	-	70.3	73.5	75.3
ST++ [45]	-	72.7	73.8	-
$U^{2}PL * [41]$	67.8	72.5	74.8	77.1
iMAS (ours)	74.3	77.4	78.1	79.3
U ² PL‡* [41]	69.0	73.0	76.3	78.6
iMAS (ours)‡	75.2	78.0	78.2	80.2

Table 4. Comparison with SOTA methods on **Cityscapes** val set under different partition protocols. Labeled images are sampled from the Cityscapes train set, including 2, 975 samples in total. Results are reported using Resnet-50. * and † represent reproduced results in iMAS and U²PL, respectively. Results with ‡ are obtained by setting the output_stride as 8 in DeepLabV3+.

	mIOII(%)		
Loss \mathcal{L}_u	Augs of \mathcal{A}_s^I		
			72.1 (supervised)
\checkmark			75.5 (3.4 ⁺)
	\checkmark		76.5 (4.4 [†])
		\checkmark	76.9 (4.81)
\checkmark	\checkmark	\checkmark	77.9 (5.8 [†])

Table 5. Ablation studies on the effectiveness of the instancespecific model-adaptive supervision on the unsupervised loss, intensity-based and CutMix augmentations, respectively. Results are reported on **PASCAL VOC 2012** under the 1/8 (1323) partition using Resnet-101 as the backbone. Improvements over the supervised baseline are marked in blue.

Figure 2. Effectiveness of iMAS on the unsupervised loss, intensity-based and CutMix augmentations, respectively.

Conclusion

- In this paper, we highlight the instance uniqueness and propose iMAS, an instance-specific and model-adaptive supervision for semisupervised semantic segmentation.
- Relying on our class-weighted symmetric hardness-evaluating strategies, iMAS treats each unlabeled instance discriminatively and employ model-adaptive augmentation and loss weighting strategies on each instance.
- Without introducing additional networks or losses, iMAS can remarkably improve the SSS performance.

Thank You

Experiments (Cont.)

