

Ziming Liu, Song Guo, Xiaocheng Lu, Jingcai Guo, Jiewei Zhang, Yue Zeng, Fushuo Huo

PEILab, Department of Computing The Hong Kong Polytechnic University

Post ID: THU-PM-311

Overview

• What is Multi-label Zero-shot Learning (MLZSL):

Extends conventional single-label zero-shot learning to a more realistic scenario.

• The research difficulties of MLZSL:

The complex contents and relationships in a single image across various classes.

• Our Methods — (ML)²P-Encoder:

Our interest is to fully explore the power of channel-class correlation as the unique base for MLZSL.

Existing Models

LESA^[1](CVPR 2020)

BiAM^[2] (ICCV 2021)

• The over-reliance on spatial-class correlation fails to capture fine-grained class-specific semantics.

Weaknesses

The additional processing of spatial information greatly increases the computational cost of the model and limits the inference speed.

Dat Huynh and Ehsan Elhamifar. A shared multi-attention framework for multi-label zero-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
Sanath Narayan, Akshita Gupta, Salman Khan, Fahad Shahbaz Khan, Ling Shao, and Mubarak Shah. Discriminative region-based multi-label zero-shot learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

Our Approach

(ML)²P-Encoder:

$$\begin{split} \mathbf{Q} &= W_p^Q \mathcal{F}_a^i \quad \mathbf{K} = W_p^K \mathcal{F}_a^i \quad \mathbf{V} = W_p^V \mathcal{F}_a^i \\ & \operatorname{Att}(\widehat{\mathbf{Q}}, \widehat{\mathbf{K}}, \widehat{\mathbf{V}}) = \widehat{\mathbf{V}} \cdot \operatorname{softmax}(\underbrace{\widehat{\mathbf{K}} \cdot \widehat{\mathbf{Q}}}_{\mathcal{R}}) \\ & \widehat{\mathcal{F}}_a^i = \mathcal{F}_a^i + \operatorname{Att}(\widehat{\mathbf{Q}}, \widehat{\mathbf{K}}, \widehat{\mathbf{V}}) \end{split}$$

$$\mathcal{F}_{mlp1}^{i} = \mathcal{F}_{mlp}^{i} + \mathbf{W}_{2}\sigma(\mathbf{W}_{1}\text{LayerNorm}(\mathcal{F}_{mlp}^{i}))$$
$$\mathcal{M} = \mathcal{F}_{mlp1}^{i} + \mathbf{W}_{4}\sigma(\mathbf{W}_{3}\text{LayerNorm}(\mathcal{F}_{mlp1}^{i}))$$

Our Approach

[1] Yang Zhang, Boqing Gong, and Mubarak Shah. Fast zero-shot image tagging. In 2016 IEEE Conference on Computer Vision and Pattern Recognition.

[2] Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Baruch, Itamar Friedman, and Lihi Zelnik-Manor. Semantic diversity learning for zero-shot multi-label classification. In 2021 IEEE/CVF International Conference on Computer Vision.

Experiments

• Datasets:

NUS-Wide dataset: About 270K images for the whole dataset. During the experiment, 925 labels were used as 'seen labels', and 81 labels were used as 'unseen labels'.

Open-Images-V4 dataset: Contains nearly 9 million training images, 125,456 images as test images. The training set contains 7,186 'seen labels'. While 400 most frequent labels are used as 'unseen labels'.

• Evaluation Metrics:

We use the two most common evaluation metrics, the mean Average Precision (mAP) and F1-Score.

Performance Evaluation

Method	Task	mAP	F1 (K = 3)	F1 (K = 5)	Method	Task	mAP	F1 (K = 10)	F1 (K = 20)
CONSE [37]	ZSL	9.4	21.6	20.2	CONSE [37]	ZSL	40.4	0.4	0.3
	GZSL	2.1	7.0	8.1		GZSL	43.5	2.6	2.4
LabelEM [2]	ZSL	7.1	19.2	19.5	LabelEM [2]	ZSL	40.5	0.5	0.4
	GZSL	2.2	9.5	11.3		GZSL	45.2	5.2	5.1
Fast0Tag [50]	ZSL	15.1	27.8	26.4	Fast0Tag [50]	751	41.2	0.7	0.6
	GZSL	3.7	11.5	13.5		GZSL	45.2	16.0	13.0
Kim <i>et al.</i> [23]	ZSL	10.4	25.8	23.6			40.7	1.0	
	GZSL	3.7	10.9	13.2	Attention per Cluster [22]	ZSL	40.7	1.2	0.9
Attention per Cluster [22] LESA [22]	ZSL	12.9	24.6	22.9		GZSL	44.9	10.9	13.5
	GZSL	2.6	6.4	7.7	LESA [22]	ZSL	41.7	1.4	1.0
	ZSL	19.4	31.6	28.7		GZSL	45.4	17.4	14.3
	GZSL	5.6	14.4	16.8	BiAM [36]	ZSL	62.8	4.1	3.7
BiAM [36]	ZSL	25.8	32.0	29.4		GZSL	79.6	17.6	15.1
	GZSL	8.9	15.5	18.5		ZSL	65.7	7.5	6.5
Our Approach	ZSL	29.4	32.8	32.3	32.3 Our Approach	GZSL	79.9	27.6	24.1
	GZSL	10.2	15.8	19.2					

NUS-Wide Dataset

Open-Images V4 Dataset

Qualitative & Visualization Results

Attention Visualization Comparison

Qualitative Results

Thanks!