TUE-AM-181

Uncovering the Disentanglement Capability in Text-to-Image Diffusion Models

Qiucheng Wu¹, Yujian Liu¹, Handong Zhao², Ajinkya Kale², Trung Bui², Tong Yu², Zhe Lin², Yang Zhang³, Shiyu Chang¹

¹UC Santa Barbara, ²Adobe Research, ³MIT-IMB Watson AI Lab

Presenter: Qiucheng Wu

- **Disentanglement** is a desired property in generative models.
 - E.g., a **disentangled** model can generate a person with **expression changed** but **identity preserved**.

+ smile

- **Disentanglement** is a desired property in generative models.
 - E.g., a **disentangled** model can generate a person with **expression changed** but **identity preserved**.

+ smile

- Many generative models (e.g., GANs) inherently have this disentanglement property.
- Our research question:

Does a pre-trained *text-to-image model* have the *disentanglement capability*?

- **Disentanglement** is a desired property in generative models.
 - E.g., a **disentangled** model can generate a person with **expression changed** but **identity preserved**.

+ smile

- Many generative models (e.g., GANs) inherently have this property.
- Our research question:

Does a pre-trained *text-to-image model* have the *disentanglement capability*?

Yes!

- In this work, we discover the **disentanglement capability** in **text-to-image diffusion** model.
- Our finding leads to a simple disentangle editing framework.
- The framework can effectively edit a wide range of attributes without changing the contents.

Attribute: Cherry Blossom

Attribute: Red Brick

Attribute: Renaissance

- We find the stable diffusion model inherently enables disentanglement.
- Goal: Generate an image of the same person with only facial expression changed.

- We find the stable diffusion model inherently enables disentanglement.
- Goal: Generate an image of the same person with only facial expression changed.
- Consider two text input embeddings:

 $c^{(0)}$ (style-neutral): "A photo of person"

 $c^{(1)}$ (with style): "A photo of person with smile"

 $c^{(0)}$ (style-neutral): "A photo of person"

 $c^{(1)}$ (with style): "A photo of person with smile"

• Original: Directly feed $c^{(0)}$.

(a person, with no smile)

 $c^{(0)}$ (style-neutral): "A photo of person"

 $c^{(1)}$ (with style): "A photo of person with smile"

• Case 1: Full replacement

 $c^{(0)}$ (style-neutral): "A photo of person"

 $c^{(1)}$ (with style): "A photo of person with smile"

• Case 2: Partial replacement

- Goal: Generate an image of the same person with only facial expression changed.
- Consider two text input embeddings:

c⁽⁰⁾: "A photo of person"

 $c^{(1)}$: "A photo of person with smile"

- Conclusion:
 - The stable diffusion model inherently enables disentanglement.
 - The disentanglement can be triggered by **partially replacing the text embeddings.**

Optimizing for Disentanglement

• Our method optimizes a soft combination of two text embeddings:

•
$$c^{(0)}$$
: "A castle"
• $c^{(1)}$: "A children drawing of castle" $c_t = \lambda_t c^{(1)} + (1 - \lambda_t) c^{(0)}$

Optimizing for Disentanglement

- Our method optimizes a soft combination of two text embeddings:

 - $c^{(0)}$: "A castle" $c^{(1)}$: "A children drawing of castle" $c_t = \lambda_t c^{(1)} + (1 \lambda_t) c^{(0)}$
- The stable diffusion conditions on c_t to synthesize image with modified style (children drawing).
- λ_t Optimization:
 - CLIP loss to control style
 - Perceptual loss to preserve content

Optimizing for Disentanglement

- Our method optimizes a soft combination of two text embeddings:

 - $c^{(0)}$: "A castle" $c^{(1)}$: "A children drawing of castle" $c_t = \lambda_t c^{(1)} + (1 \lambda_t) c^{(0)}$
- The stable diffusion conditions on c_t to synthesize image with modified style (children drawing).
- λ_t Can be transferred to novel images and lead to similar editing effects.

Experiment: Disentanglement Capability

- Our method is able to disentangle a wide range of attributes.
 - Global attributes: scenery styles, architecture materials, etc.
 - Local attributes: facial expressions, etc.

A street view, Cyberpunk style

A photo of church exterior, golden

A photo of person, Egyptian mural style

Experiment: Image Editing

- Based on the subjective study, our method shows advantages in image editing.
 - Datasets: LSUN Church (Scene), Celeba Face (Person)
 - Baseline: DiffusionCLIP
 - Our method outperforms DiffusionCLIP in 6 out of 8 attributes with following metrics:
 - Attribute Similarity
 - Content Preservation

Experiment: Image Editing

• Our method shows competitive editing performance compared with strong baselines.

Limitations

		Scenes	Person
~	Global	Styles (children drawing, cyberpunk, anime), Building appearance (wooden, red brick), Weather & time (sunset, night, snowy)	Styles (renaissance, Egyptian mural, sketch, Pixar) Appearance (young, tanned, male)
	Local	Cherry blossom, rainbow, foothills	Expressions (smiling, crying, angry)
×	Small edits	Cake toppings, remove people on the street	Hats, hair colors, earrings

- We explore a wide range of attributes and find **small edits** are hard to be disentangled.
- Diffusion model has weaker control over these fine-grained details.

A cake, jelly beans decorations

Thank you!

