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CAP: An Overview

Overview Problem Analysis Our Approach Experiments Conclusion

• CAP is a general defense framework for training robust point cloud classification models

• CAP enhances the semantic and structural modeling ability of various existing classifiers

• CAP provides a robustness certification algorithm for potential adversarial attacks



Adversarial Threats for PC Classification

Point cloud classification

• 𝐹𝐹:𝑋𝑋 ↦ 𝑦𝑦, where 𝑋𝑋 ∈ ℝ𝑁𝑁×3,𝑦𝑦 ∈ 1,⋯ ,𝐶𝐶

Various emerging adversarial attacks

• Distinct perturbation types

• Diverse adversarial example properties

Poor generalizability of existing defenses

• Adversarial training-based: can only be effective on seen attacks

• Recovery-based: can be evaded by shape-invariant attacks
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Our Proposed CAP
Motivation

• Adversarial example preserves semantic and structural information

• Existing classifiers pay attention to limited segments or local features

Contrastive and Attentional Point cloud learning

• Attention-based feature pooling

• Dynamic contrastive learning

Certified robustness

• An algorithm to theoretically certify the robustness of a classifier

• Based on manifold learning and extreme value theory

Experiments ConclusionProblem AnalysisOverview Our Approach



The Comprehensive Framework
Attention-based feature pooling

• Replace the max-pooling of current classifiers with class-wise attention

• Compute the attention score for point 𝑖𝑖 w.r.t. class 𝑐𝑐 as 𝛼𝛼𝑖𝑖,𝑐𝑐 = exp(ℎ𝑖𝑖
𝑇𝑇𝜔𝜔𝑐𝑐/𝜏𝜏)

∑𝑐𝑐′ exp(ℎ𝑖𝑖
𝑇𝑇𝜔𝜔𝑐𝑐′/𝜏𝜏)

• Aggregate point features, then extract global feature by �ℎ𝑐𝑐 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖,𝑐𝑐ℎ𝑖𝑖 , 𝑧𝑧 = conv �ℎ𝑖𝑖 ,⋯ , �ℎ𝐶𝐶 ,𝑊𝑊ℎ

Dynamic contrastive learning

• Triplet loss: ℓ 𝑋𝑋,𝑋𝑋𝑠𝑠,𝑋𝑋𝑡𝑡;𝜃𝜃 = max(𝑑𝑑 𝑋𝑋,𝑋𝑋𝑠𝑠 − 𝑑𝑑 𝑋𝑋,𝑋𝑋𝑡𝑡 + 𝜖𝜖, 0)

• Margin loss: 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑋𝑋𝑠𝑠,𝑋𝑋𝑡𝑡∈𝐵𝐵 𝑋𝑋

ℓ 𝑋𝑋,𝑋𝑋𝑠𝑠,𝑋𝑋𝑡𝑡;𝜃𝜃

• Dynamic learning paradigm

• min
𝜃𝜃
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃;𝑋𝑋 + exp 𝜖𝜖 − �𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃;𝑋𝑋 ⋅ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃;𝑋𝑋)
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Robustness Certification
Manifold learning

• Consider samples from class 𝑠𝑠 lie on manifold ℳ𝑠𝑠

• Sample distance between 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ∈ ℳ𝑠𝑠: 𝑑𝑑 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 = 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗 2

Robustness certification

• Maximal feature bias within class: 𝑚𝑚 ℳ𝑠𝑠; 𝛿𝛿 = sup
𝑋𝑋𝑠𝑠∈ℳ, 𝜂𝜂 𝑝𝑝≤𝛿𝛿

𝑑𝑑 𝑋𝑋𝑠𝑠, �𝑋𝑋𝑠𝑠

• Medial axes feature distance between classes: 𝑟𝑟 ℳ𝑠𝑠,ℳ𝑡𝑡 = inf
𝑋𝑋𝑖𝑖∈ℳ𝑠𝑠,𝑋𝑋𝑗𝑗∈ℳ𝑡𝑡

𝑑𝑑 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

• EVT-based estimation of the CDF of distances: 𝑃𝑃 𝑑𝑑∗ > 𝑑𝑑 ≈ 𝑣𝑣
𝑉𝑉
⋅ 1 + 𝛾𝛾∗ ⋅

𝑑𝑑∗
𝑣𝑣 −𝑑𝑑
𝛽𝛽∗

− 1
𝛾𝛾∗

,𝑑𝑑 > 𝑑𝑑∗
𝑣𝑣

• Certified probability of 𝑚𝑚 > 𝑟𝑟: 𝜌𝜌 𝑠𝑠, 𝑡𝑡 = 𝑃𝑃 𝑑𝑑𝑠𝑠 > 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃 𝑑𝑑𝑡𝑡 < 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Experimental Setting
Dataset

• ModelNet40, ShapeNet

Base model

• PointNet, DGCNN, PointCNN

Nine attack baselines

• Normal attacks: Minimal, Smooth, IFGM, PGD, Gen3D-Add, Gen3D-Pert

• Shape-invariant attacks: KNN, GeoA3, SI

Seven defense baselines

• Adversarial training (AT)-based: AT, AT-PGD, Ensemble AT, PAGN, GvG

• Recovery-based: SOR, DUP-Net
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Experimental Results

ConclusionProblem AnalysisOverview Our Approach Experiments

CAP separates learned features

CAP provides certified 
robustness consistent 
with empirical results

CAP helps classifiers pay 
attention to different 
parts of a point cloud



Conclusion
Conclusion

• We point out that adversarial attacks preserve key characteristics of original samples

• We develop CAP to enhance the modeling of semantic and structural information

• Attention-based feature pooling: automatically focuses on important parts

• Dynamic contrastive learning: coarse-to-fine training separates features

• We provide robustness certification against potential adversarial attacks

Future work

• Validating CAP on voxel-based and transformer-based classifiers

• Extending CAP to other point cloud applications, e.g., 3D object detection / segmentation

• Apply CAP to various domains other than point cloud tasks
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Thank you for listening!

If you have any questions, please contact us.

Website of Whitzard-AI Group: https://whitzard-ai.github.io/
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