

GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection

Xixi Liu, Yaroslava Lochman, Christopher Zach

Chalmers University of Technology

Why OOD detection?

- Diverse inputs
- To ensure the reliability of the deep learning models
 - high-stake tasks, such as medical image analysis and autonomous driving.
- OOD detection:
 - differentiates between in-distribution (ID) and out-of-distribution (OoD) inputs at test time.
- A model should know what they do not know.

Generalized OOD detection

Reproduced from "Generalized OOD Detection: A Survey", Jingkang Yang et al., 2021.

Distributional shift

- Semantic shift
 - $P_{ ext{train}}(Y)
 eq P_{ ext{test}}(Y)$
 - The occurrence of new classes
 - Novelty detection and OOD detection
- Covariate shift
 - $P_{ ext{train}}(X)
 eq P_{ ext{test}}(X)$
 - Style change or adversarial examples
 - Sensory anomaly detection

Classification-based method

- Require a softmax-based (pre-trained) classifier
 - Post-hoc method
 - aims to design a suitable score function for distinguishing between ID and OOD data accurately given a pre-trained classifier.
 - Enhancing method
 - modifies features from intermediate layers to enhance
 OOD performance for given score functions.
 - Training loss modification
 - incorporates OOD samples (e.g. outlier exposure/synthesis) in the training procedure to perform OOD detection.

Test

Post-hoc methods

- Overhead cost of retraining is avoided
- Use both feature and predictive distribution
 - GradNorm and predictive normalized maximum likelihood (pNML)
- Use both feature and logit:
 - Virtual-logit Matching (ViM)

 $X_{\gamma}(p) = \sum_j p_j^{\gamma} (1-p_j)^{\gamma}, \gamma \in (0,1).$

Generalized entropy

Assumption: In-distribution test samples close to the training data are expected to result in a confident prediction.

 $G_\gamma(oldsymbol{p}) = \sum_j p_j^\gamma (1-p_j)^\gamma, \gamma \in (0,1).$

Truncation

Considering sorted predictive probabilities, $p_{j_1} \ge p_{j_2} \ge \cdots \ge p_{i_C}$, our score is designed to capture small entropy variations in the top-M classes. The final score reads as $-G_{\gamma}(m{p}) = -\sum_{m=1}^{M} p_{i_m}^{\gamma} (1-p_{i_m})^{\gamma}$

Selected Results

Selected Results

	OOD Method	OpenImage-O		Textures		iNaturalist		ImageNet-O		Average	
		AUROC ↑	FPR95↓	AUROC ↑	FPR95↓	AUROC \uparrow	FPR95↓	AUROC \uparrow	FPR95↓	AUROC ↑	FPR95↓
Post-hoc	MSP [4]	86.62	55.87	82.58	63.20	90.45	44.01	66.56	82.97	81.55	61.51
	MaxLogit [1]	86.26	52.33	82.57	59.18	89.82	43.41	68.77	76.47	81.85	57.85
	EnergyBased [5]	83.91	55.87	80.52	62.79	86.89	51.55	69.01	73.99	80.08	61.05
	GradNorm [7]	54.82	78.12	60.31	76.58	56.83	75.14	51.02	85.47	55.75	78.83
	ODIN [6]	86.80	50.74	83.10	58.12	89.62	43.79	68.42	77.09	81.98	57.44
	ReAct*	84.21	55.69	80.96	62.70	87.03	51.29	69.34	74.10	80.39	60.94
	Shannon	81.98	52.06	83.97	59.18	91.48	41.56	68.99	70.71	83.09	57.63
	GEN	<u>89.83</u>	<u>49.04</u>	86.19	55.65	93.27	35.59	$\underline{73.69}$	77.83	85.74	54.53
	GEN + ReAct*	90.07	49.00	86.62	<u>55.66</u>	93.38	35.54	74.11	77.87	86.04	54.52
Require ID	KL Matching [1]	89.03	50.57	86.10	55.86	92.45	36.05	72.69	77.97	85.07	55.11
	Mahalanobis [2]	89.56	50.86	91.99	37.62	92.37	42.05	81.89	71.57	88.95	50.52
	ReAct [8]	79.84	54.40	81.92	54.44	82.80	46.29	69.03	72.87	78.40	57.00
	pNML [9]	90.61	41.76	89.91	37.20	93.49	31.42	73.94	71.12	86.99	45.38
	Residual [3]	87.14	56.00	91.90	36.84	89.41	48.04	81.22	71.20	87.42	53.02
	ViM [3]	91.85	43.16	93.43	30.04	93.47	37.41	83.07	66.72	90.45	44.33
	GEN + ReAct [8]	90.59	46.94	88.76	50.91	<u>93.89</u>	<u>32.70</u>	75.76	76.76	87.25	51.83
	GEN + Residual	92.23	42.05	<u>93.01</u>	<u>31.69</u>	94.36	33.85	82.58	69.24	90.55	44.21

Conclusion

- ✓ GEN uses output probabilities only.
- ✓ It does not use any training data statistics.
- ✓ It does not require re-training and/or outlier exposure.

Yet it performs very well across four datasets and six architectures, meaning that it can potentially be used in more constrained model deployment scenarios!

