

HyperCUT: Video Sequence From a Single Blurry Image Using Unsupervised Ordering

Bang-Dang Pham^{1,*}

Phong Tran^{1,2,*}

Rang Nguyen¹

³Posts & Telecommunications Inst. of Tech., Vietnam

*Equal contribution

Anh Tran¹

Minh Hoai^{1,4}

⁴Stony Brook University, USA

Cuong Pham^{1,3}

¹VinAl Research, Vietnam

²MBZUAI. UAE

Image-to-video deblurring (**Blur2Vid**)

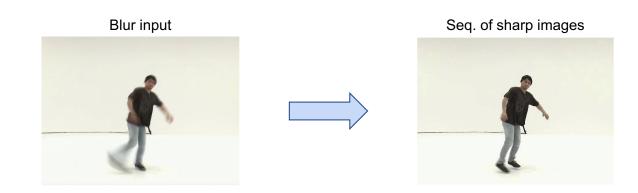
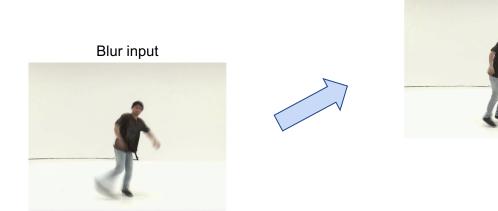
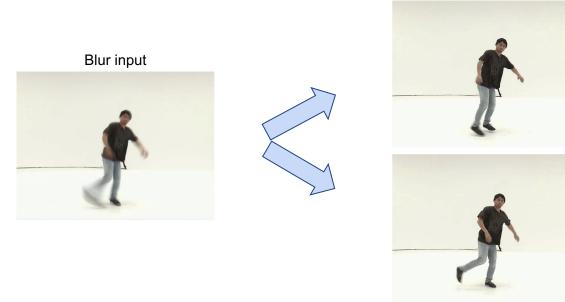


Image-to-video deblurring (**Blur2Vid**)



Seq. of sharp images

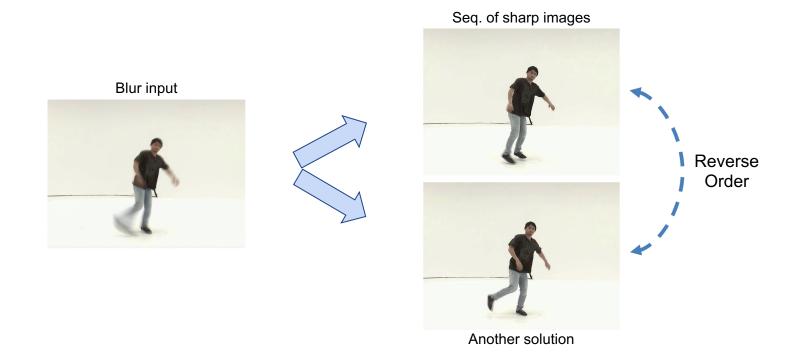
Image-to-video deblurring (**Blur2Vid**)



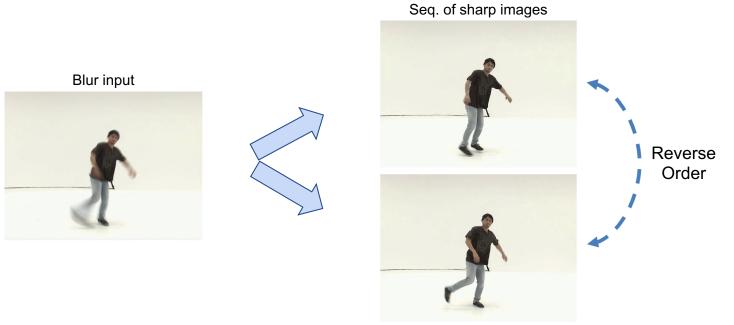
Seq. of sharp images

Another solution

Image-to-video deblurring (**Blur2Vid**)

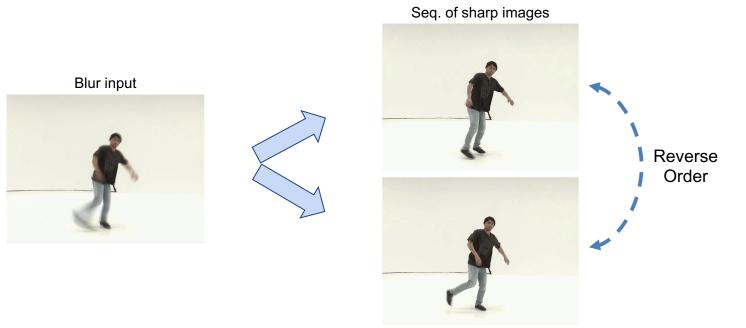


Order-Ambiguity Issue



Another solution

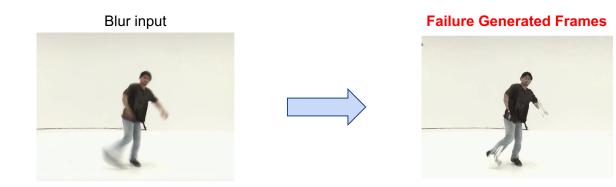
Order-Ambiguity Issue



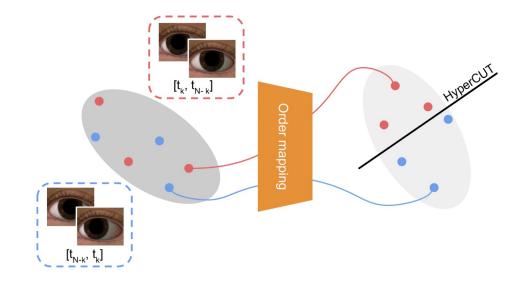
Another solution

Order-Ambiguity Issue ⇒ Fail Training

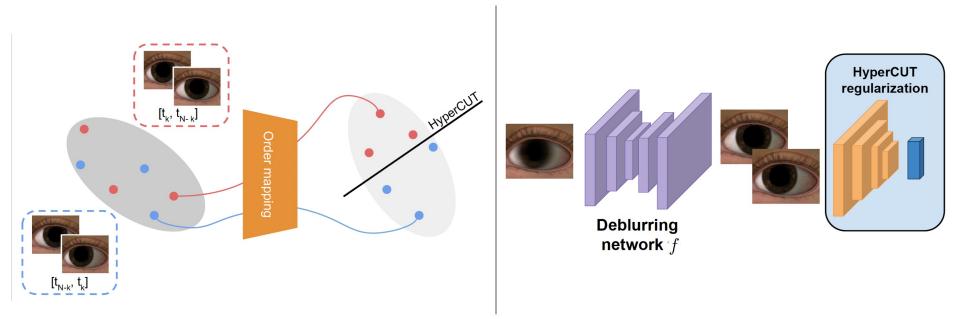
Order-Ambiguity Issue ⇒ Fail Training ⇒ **Incorrect Motion**



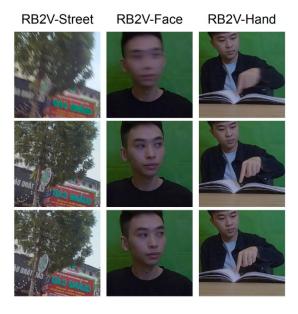
• We propose HyperCUT, an effective Self-supervised Ordering Scheme that assigns an explicit order for each video sequence, thus avoiding the order-ambiguity issue



• We propose HyperCUT, an effective Self-supervised Ordering Scheme that assigns an explicit order for each video sequence, thus avoiding the order-ambiguity issue



- We propose HyperCUT, an effective Self-supervised Ordering Scheme that assigns an explicit order for each video sequence, thus avoiding the order-ambiguity issue
- We provide the **first real-world blur2vid** dataset covers a variety of popular domains, including **face**, **hand**, and **street**



Data subset	#data samples				
	Train	Test			
RB2V-Street	9000	2053			
RB2V-Face	8000	2157			
RB2V-Hand 12000 4722					
Dataset Statistics					

- We propose HyperCUT, an effective Self-supervised Ordering Scheme that assigns an explicit order for each video sequence, thus avoiding the order-ambiguity issue
- We provide the **first real-world blur2vid** dataset covers a variety of popular domains, including **face**, **hand**, and **street**

Model		1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
[1]		20.65	22.63	24.20	23.50	24.20	22.63	20.65
[1] + HyperCUT	REDS	22.87	24.88	26.29	25.10	26.29	24.88	22.86
Baselines [2]	RE	22.78	24.47	26.14	31.50	26.12	24.49	22.83
[2] + HyperCUT		26.75	28.30	29.42	29.97	29.41	28.30	26.76
[2]	2V	26.99	27.99	29.45	32.08	29.55	28.06	27.04
[2] + HyperCUT	RB	28.29	29.20	30.43	32.08	30.53	29.22	28.25

Generated frames

[1] Meiguang Jin, Givi Meishvili, and Paolo Favaro. Learning to extract a video sequence from a single motion-blurred image. CVPR, 2018 [2] Kuldeep Purohit, Anshul Shah, and AN Rajagopalan. Bringing alive blurred moments. CVPR, 2019

- We propose HyperCUT, an effective Self-supervised Ordering Scheme that assigns an explicit order for each video sequence, thus avoiding the order-ambiguity issue
- We provide the **first real-world blur2vid** dataset covers a variety of popular domains, including **face**, **hand**, and **street**

Model		1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
[1]		20.65	22.63	24.20	23.50	24.20	22.63	20.65
[1] + HyperCUT	REDS	22.87	24.88	26.29	25.10	26.29	24.88	22.86
Baselines [2]	RE	22.78	24.47	26.14	31.50	26.12	24.49	22.83
[2] + HyperCUT		26.75	28.30	29.42	29.97	29.41	28.30	26.76
[2]	2V	26.99	27.99	29.45	32.08	29.55	28.06	27.04
[2] + HyperCUT	RB2	28.29	29.20	30.43	32.08	30.53	29.22	28.25

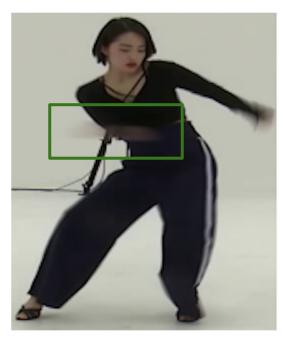
Generated frames

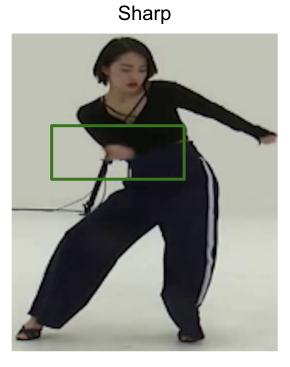
[1] Meiguang Jin, Givi Meishvili, and Paolo Favaro. Learning to extract a video sequence from a single motion-blurred image. CVPR, 2018 [2] Kuldeep Purohit, Anshul Shah, and AN Rajagopalan. Bringing alive blurred moments. CVPR, 2019

Blur

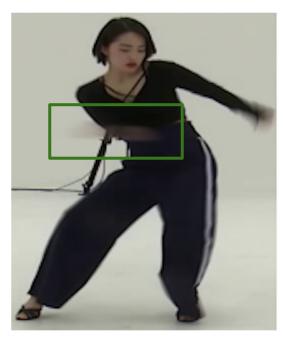
Sharp

Blur

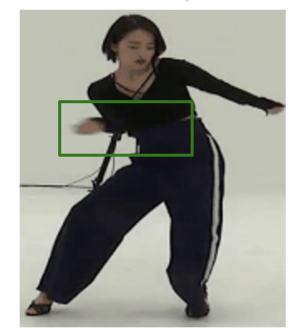




Blur



Sharp images



Better Motion Analysis

• Naive Optimization approach:

$$f_k = \underset{f}{\operatorname{argmin}} \mathbb{E}_{x,y} ||f(y) - x_k||_2^2$$

with y: blur input

 x_k : ground-truth sharp images

 f_k : network predict each sharp frame

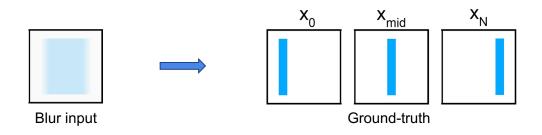
• Naive Optimization approach:

$$f_k = \underset{f}{\operatorname{argmin}} \mathbb{E}_{x,y} ||f(y) - x_k||_2^2$$

with y: blur input

 x_k : ground-truth sharp images

 f_k : network predict each sharp frame



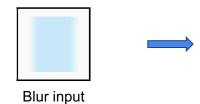
• Naive Optimization approach:

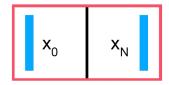
$$f_k = \underset{f}{\operatorname{argmin}} \mathbb{E}_{x,y} ||f(y) - x_k||_2^2$$

with y: blur input

 x_k : ground-truth sharp images

 f_k : network predict each sharp frame





Ground-truth

• Naive Optimization approach:

$$f_k = \underset{f}{\operatorname{argmin}} \mathbb{E}_{x,y} ||f(y) - x_k||_2^2$$

with y: blur input

- x_k : ground-truth sharp images
- f_k : network predict each sharp frame

Blur input

X₀

Naive deblurring

x _o	x _N
----------------	----------------

Ground-truth

• Order-Invariant loss:

$$\mathcal{L}_{OI} = \sum_{k=0}^{2} \left(|||f_k(y) - f_{6-k}(y)|| - ||x_k - x_{6-k}||| + |||f_k(y) + f_{6-k}(y)|| - ||x_k + x_{6-k}||| \right) \longrightarrow \text{accept any order}$$

with y: blur input

 x_k : ground-truth sharp images (x_0, \ldots, x_6)

 f_k : network predict each sharp frame (f_0, \ldots, f_6)

• Order-Invariant loss:

$$\mathcal{L}_{OI} = \sum_{k=0}^{2} \left(|||f_k(y) - f_{6-k}(y)|| - ||x_k - x_{6-k}||| \right) \longrightarrow \text{accept any order}$$

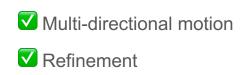
+ $|||f_k(y) + f_{6-k}(y)|| - ||x_k + x_{6-k}|||)$

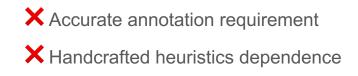
with y: blur input

 x_k : ground-truth sharp images (x_0, \ldots, x_6)

 f_k : network predict each sharp frame (f_0,\ldots,f_6)

• Motion Guidance:





• Motion Guidance:

Separate the solution space

Consistent and efficient order alignment

No heuristic dependence

Multi-directional motion

Refinement

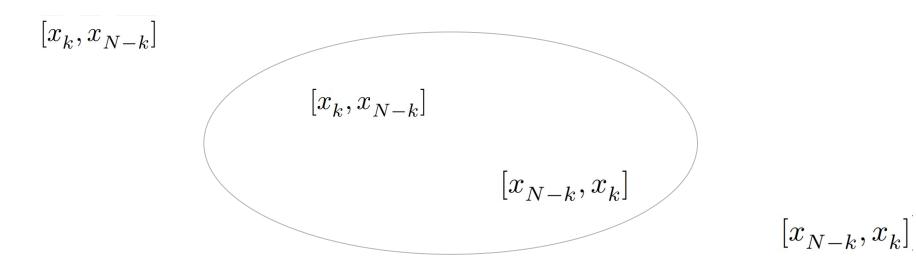
× Accurate annotation requirement× Handcrafted heuristics dependence

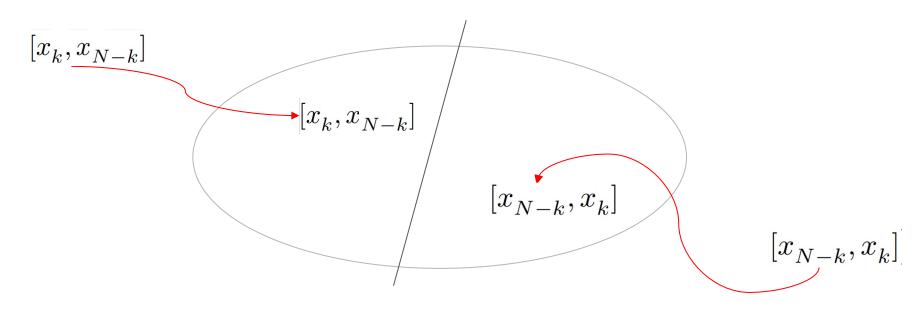
$$[x_k, x_{N-k}]$$

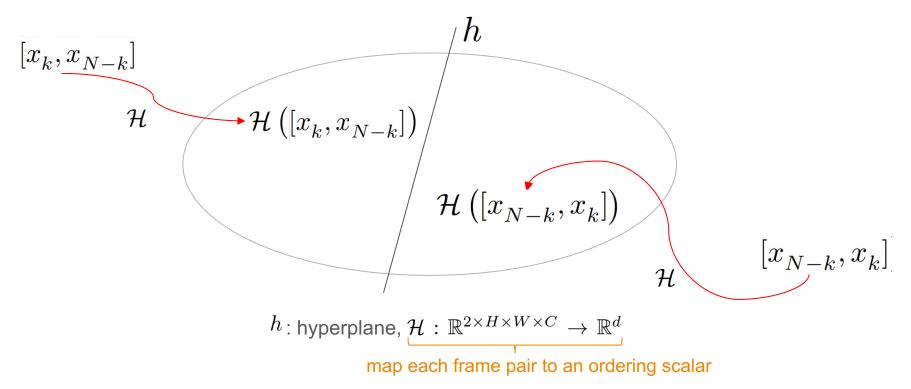
$$[x_{N-k}, x_k]$$

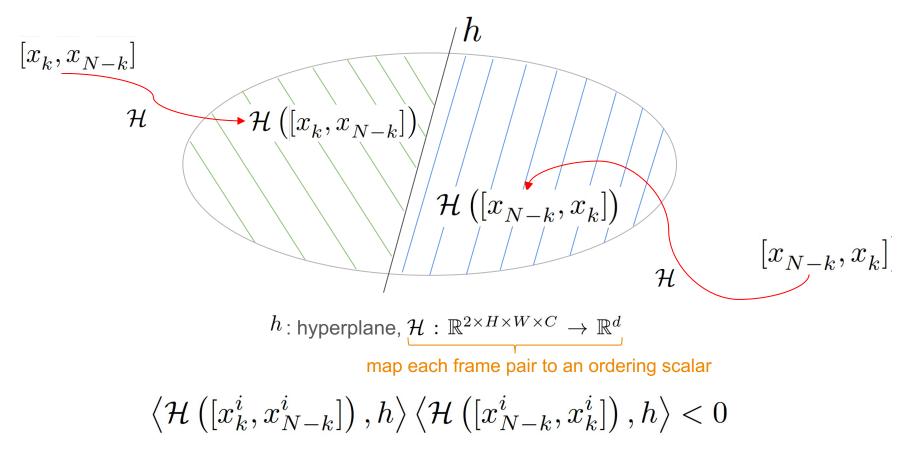
$$[x_k, x_{N-k}]$$

$$[x_{N-k}, x_k]$$

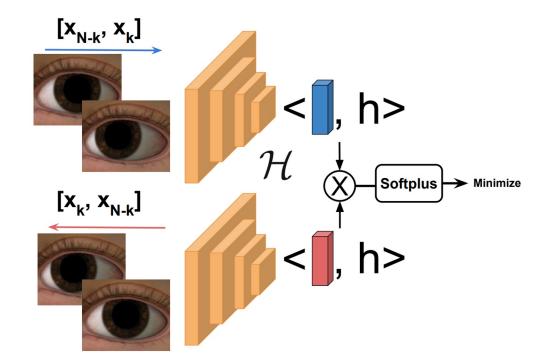




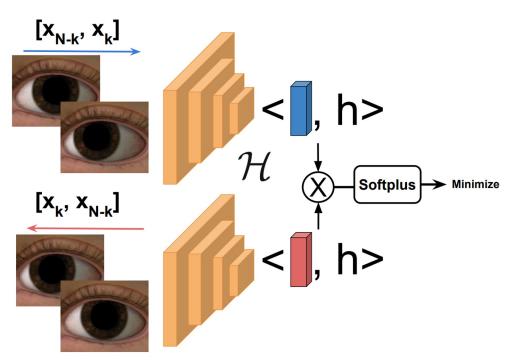




Proposed Method - HyperCUT Training

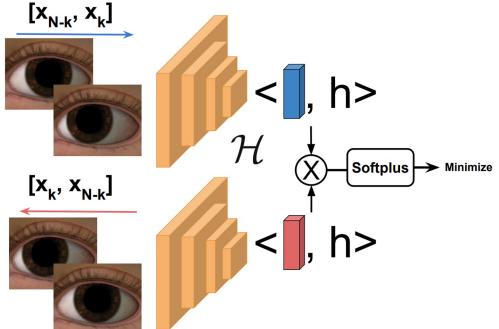


Proposed Method - HyperCUT Training



Proposed Method - HyperCUT Training

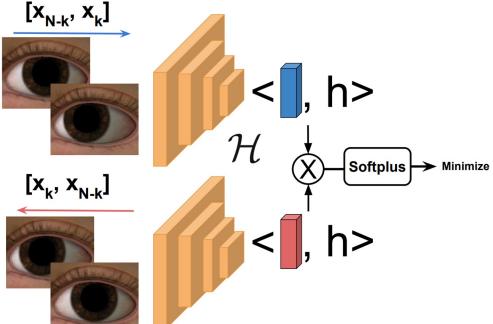
• For each sample i, our objective:



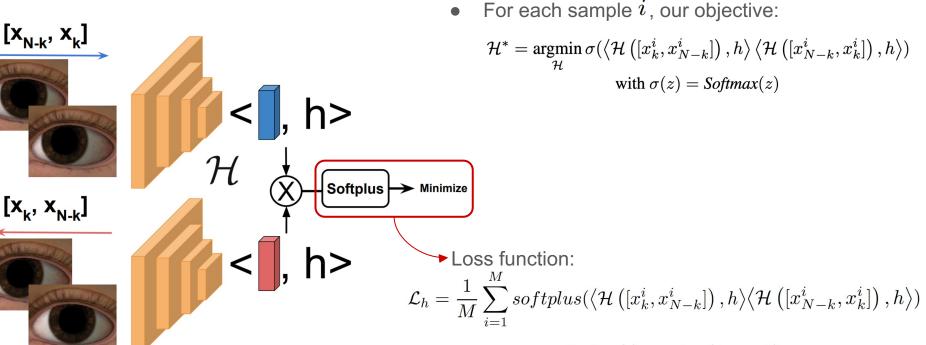
Proposed Method - HyperCUT Training

• For each sample i, our objective:

$$\begin{split} \mathcal{H}^* &= \operatorname*{argmin}_{\mathcal{H}} \sigma(\left\langle \mathcal{H}\left([x_k^i, x_{N-k}^i]\right), h\right\rangle \left\langle \mathcal{H}\left([x_{N-k}^i, x_k^i]\right), h\right\rangle) \\ & \text{with } \sigma(z) = \textit{Softmax}(z) \end{split}$$

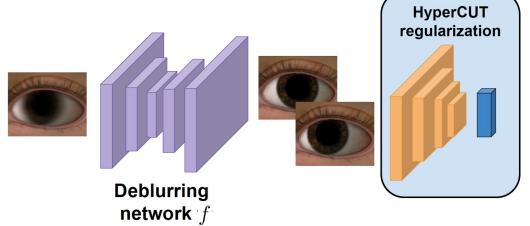


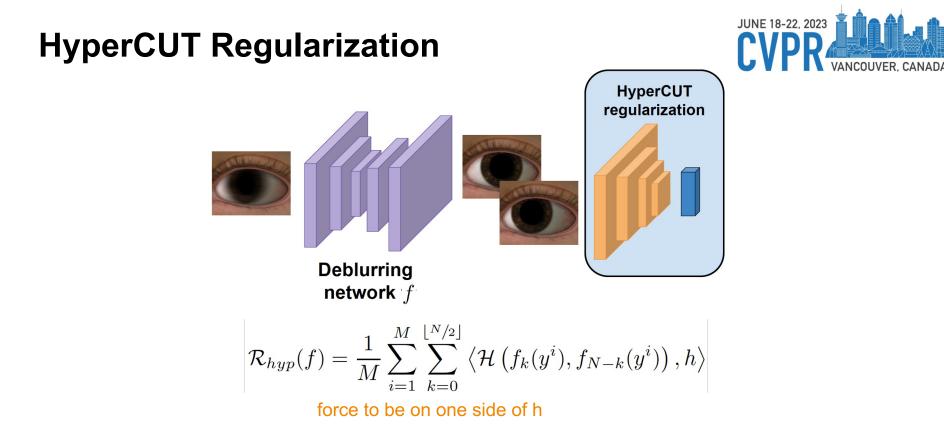
Proposed Method - HyperCUT Training

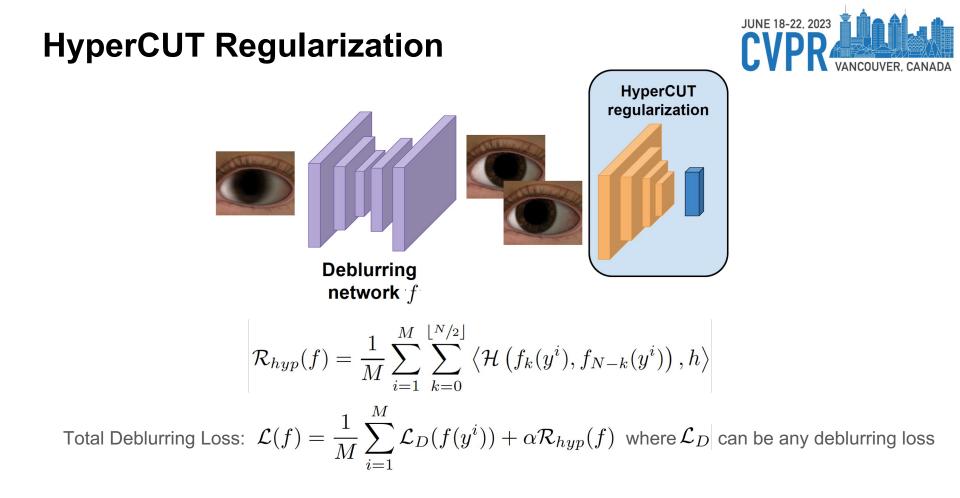


With $softplus(t) = \log(1 + e^x)$

HyperCUT Regularization

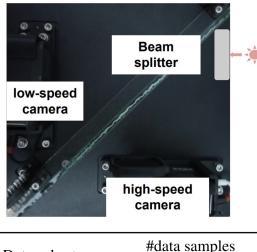




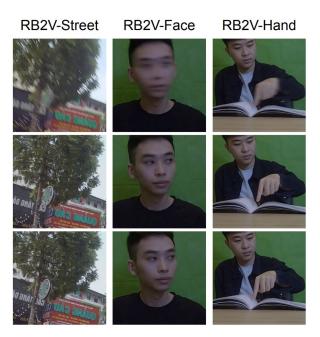


Datasets

Datasets - Real



Data subset	#data samples			
	Train	Test		
RB2V-Street	9000	2053		
RB2V-Face	8000	2157		
RB2V-Hand	12000	4722		



- We propose a real-world blur2vid dataset
- Three categories: Street, Face, and Hand

Datasets - Synthetic

REDS

B-Aist++

REDS

- **120fps**
- Interpolate frames to form 7 sharp sequences

- B-Aist++
 - Config augmentation and setting proposed as in [3]

[3] Zhihang Zhong, Xiao Sun, Zhirong Wu, Yinqiang Zheng, Stephen Lin, and Imari Sato. Animation from blur: Multimodal blur decomposition with motion guidance. ECCV, 2022

Results

Results - Order Accuracy of HyperCUT

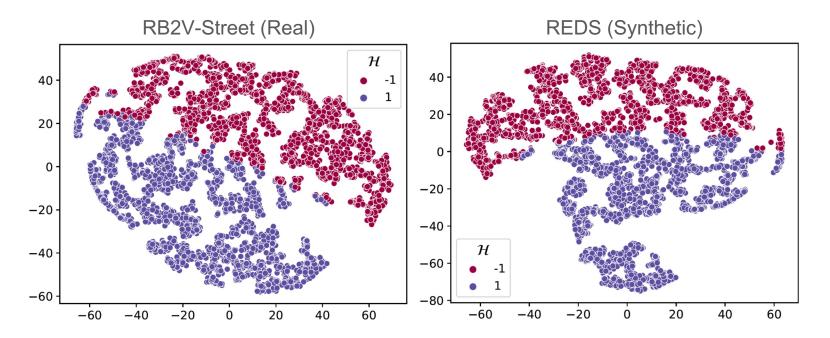
- We define 2 metrics:
 - **hit**: is the ratio of frame pairs (x_k, x_{N-k}) that satisfy:

 $\langle \mathcal{H}([x_k, x_{N-k}]), h \rangle \langle \mathcal{H}([x_{N-k}, x_k]), h \rangle < 0$

• **con**: measures the **con**sistency ratio that the pairs (x_1, x_7) , (x_2, x_6) , and (x_3, x_5) are in the same side of the hyperplane h.

Dataset	hit	con@2	con@3
REDS	95.7	96.5	94.4
B-Aist++	97.5	95.6	91.2
RB2V-Face	94.4	96.7	92.1
RB2V-Hand	98.6	97.0	96.7
RB2V-Street	98.7	98.3	96.8

Results - Order Accuracy of HyperCUT



The t-SNE visualization of HyperCUT ordering mapping

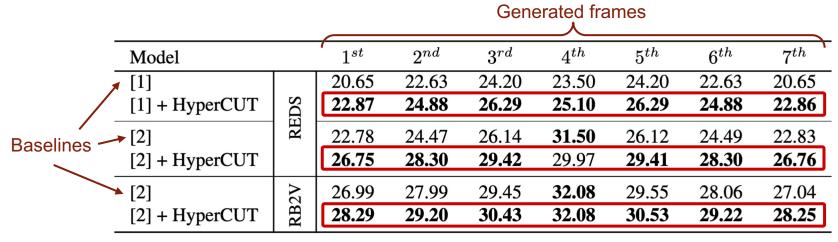
- For fair comparison, as forward and backward frames are plausible solutions, we define metric pM where M is represented for $\mbox{PSNR},\mbox{SSIM},\mbox{LPIPS}$

$$pM\left(\left[x_{k}^{i}, x_{N-k}^{i}\right]\right) = \max\left(M\left(\left[x_{k}^{i}, x_{N-k}^{i}\right]\right), M\left(\left[x_{N-k}^{i}, x_{k}^{i}\right]\right)\right)$$

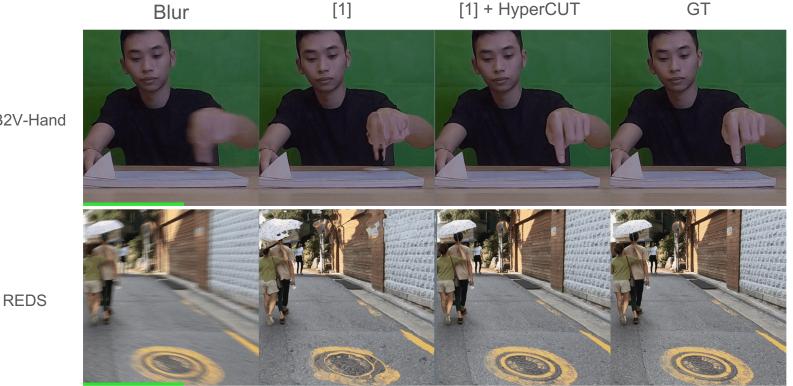
			Generated frames						
	Model		1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}
, ,	[1]		20.65	22.63	24.20	23.50	24.20	22.63	20.65
	[1] + HyperCUT	REDS	22.87	24.88	26.29	25.10	26.29	24.88	22.86
Baselines -	→ [2]	RE	22.78	24.47	26.14	31.50	26.12	24.49	22.83
	[2] + HyperCUT		26.75	28.30	29.42	29.97	29.41	28.30	26.76
	• [2]	2V	26.99	27.99	29.45	32.08	29.55	28.06	27.04
	[2] + HyperCUT	RB2	28.29	29.20	30.43	32.08	30.53	29.22	28.25

. . .

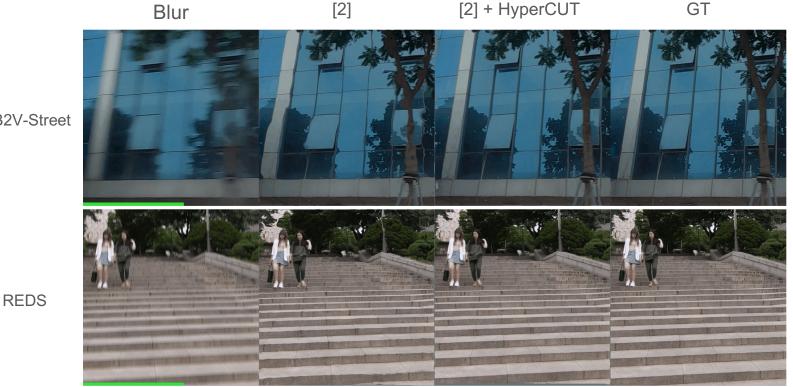
The pPSNR↑ scores (dB)



The pPSNR↑ scores (dB)



RB2V-Hand



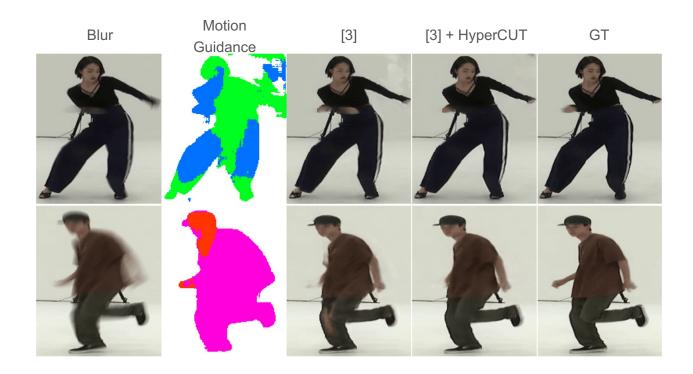
RB2V-Street

Results on the B-Aist++ dataset

Method	[3] (from paper)	[3] (reproduced)	[3] + HyperCUT
\mathcal{P}_1	19.97 / 0.860 / 0.089	20.58 / 0.890 / 0.068	22.16 / 0.901 / 0.102
\mathcal{P}_3	22.44 / 0.890 / 0.068	21.21 / 0.899 / 0.063	23.31 / 0.915 / 0.062
\mathcal{P}_5	23.49 / 0.911 / 0.060	22.48 / 0.903 / 0.061	23.81 / 0.920 / 0.060

The pPSNR↑/ pSSIM↑ / pLPIPS↓ scores

[3] Zhihang Zhong, Xiao Sun, Zhirong Wu, Yinqiang Zheng, Stephen Lin, and Imari Sato. Animation from blur: Multimodal blur decomposition with motion guidance. ECCV, 2022



Conclusion

JUNE 18-22, 2023

- We introduce **HyperCUT** which is used to solve the **order-ambiguity issue** effectively for the task of extracting a sharp video sequence from a blurry image.
- We build a new dataset for the task RB2V, covering three categories: Street, Face, and Hand. This is the first real and large-scale dataset for image-to-video deblurring.
- Our model achieves **state-of-the-art performance** on both synthetic and real-world benchmarks.
- Future research on adapting HyperCUT for handling complex movements and long exposure blur would be an interesting avenue for exploration.

