

Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning

The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 Sungnyun Kim*, Sangmin Bae*, Se-Young Yun (*: equal contribution)

Poster ID: TUE-PM-326

Optimization and Statistical Inference LAB

Highlights of the Paper

Self-Supervised Learning (SSL) is a promising approach for fine-grained tasks.

Highlights of the Paper

We can assume an **Open-Set** to build a versatile model.

Highlights of the Paper

We propose a novel and simple coreset sampling algorithm, **SimCore**.

Motivating Experiments

Addressing distribution mismatch between fine-grained dataset and open-set is a critical issue.

- 1. SSL on the **open-set** (*OS*) does not always outperform SSL on **target dataset** (*X*).
- 2. Selecting relevant class samples (*OS*_{oracle}) show the significant performance gains.

Problem Setting

We first propose a realistic OpenSSL task, where sampling the coreset is important on SSL performance.

Task [ref.]	Problem Setting	Train (Labeled)	Train (Unlabeled)	Test	Definition of OS/CS	Main Goal
Novel Class Discovery [26, 30, 81]	test data consist of only novel classes	seen	-	novel	-	cluster novel classes in test dataset
Open-Set Recognition [5, 12, 57, 68]	test set contains seen and novel classes	seen	-	seen + novel	[OS] test dataset containing seen and novel classes	reject instances from novel classes at test time
Webly Sup. [15, 39, 62]	train data contains web- crawled noisy samples	partially noisy	-	seen	[OS] web-crawled train dataset containing noisy samples	robustly train instances with corrupted labels
Open-Set Semi-Sup. [17, 33, 51, 56, 61]	unlabeled train data contain novel classes	seen	seen + novel	seen	[OS] training dataset contain- ing seen and novel classes	train a robust model while regularizing novel classes
Open-World Semi-Sup. [4,8,9]	train and test data contain novel classes	seen	seen + novel	seen + novel	[OS] dataset containing seen and novel classes	discover novel classes and assign samples at test time
Open-Set Annotation [50]	unlabeled data pool contains novel classes	seen	seen* + novel*	seen	[OS] unlabeled data pool with seen and novel classes	aim to query seen classes from unlabeled data pool
Coreset Selection in AL [58,72]	query instances to be annotated	seen	seen*	seen	[CS] the most representative subset of unlabeled set	find a small subset competitive to whole dataset
Coreset Selection in CL [1,65,78]	continuously learn a sequence of tasks	partially novel	-	seen	[CS] the most representative instances at each task	promote task adaptation with less catastrophic forgetting
Hard Negative Mining in Self-Sup. [55, 70]	assume that hard negatives are helpful	-	target	target	[CS] the hardest contrastive pair instances for SSL	improve SSL performance using core-negative instances
Open-Set Self-Sup. [ours]	utilize open-set in pretraining, which may have irrelevant data	-	target + irrelevant	target	[OS] large-scale unlabeled set [CS] subset of OS sharing the same semantics with target set	improve SSL performance on fine-grained datset via coreset sampling method

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

Algorithm 1: Simple coreset sampling from open-set 1 **Require:** E_{θ} : encoder pretrained on X; 2 **Require:** \mathcal{U}_0 : initial candidate set (open-set); **3 Require:** \mathcal{B}, τ : coreset budget, threshold; 4 initialize $\mathcal{I} \leftarrow \emptyset, t \leftarrow 0$; 5 replace $\hat{X} \leftarrow$ cluster centroids of X; 6 calculate $z_x, z_u \leftarrow E_{\theta}(x), E_{\theta}(u)$ for $\forall x, u \in \hat{X} \times \mathcal{U}_0$; 7 while $|\mathcal{I}| < \mathcal{B}$ do set \mathcal{S}_t^* as the elements in \mathcal{U}_t that are closest to 8 each element in \hat{X} (Eq. 2); $\mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{S}_t^*, \ \mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \mathcal{S}_t^*$ 9 $t \leftarrow t + 1$ 10 *Il stopping criterion* 11 if $\hat{f}(\mathcal{S}_t^*) < \tau \cdot \hat{f}(\mathcal{S}_1^*)$ then 12 stop sampling; 13 end 14 15 end 16 re-initialize θ and pretrain E_{θ} with $X \cup \mathcal{I}$;

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

→ Retrieval model

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

Algorithm 1: Simple coreset sampling from open-set

- 1 **Require:** E_{θ} : encoder pretrained on X; **2 Require:** \mathcal{U}_0 : initial candidate set (open-set); **3 Require:** \mathcal{B} , τ : coreset budget, threshold; 4 initialize $\mathcal{I} \leftarrow \emptyset, t \leftarrow 0$; 5 replace $\hat{X} \leftarrow$ cluster centroids of X; 6 calculate $z_x, z_u \leftarrow E_{\theta}(x), E_{\theta}(u)$ for $\forall x, u \in \hat{X} \times \mathcal{U}_0$; 7 while $|\mathcal{I}| < \mathcal{B}$ do set S_t^* as the elements in U_t that are closest to 8 each element in \hat{X} (Eq. 2); $\mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{S}_t^*, \ \mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \mathcal{S}_t^*$ 9 $t \leftarrow t + 1$ 10 *// stopping criterion* 11 if $\hat{f}(\mathcal{S}_t^*) < \tau \cdot \hat{f}(\mathcal{S}_1^*)$ then 12 stop sampling; 13 end 14 15 end 16 re-initialize θ and pretrain E_{θ} with $X \cup \mathcal{I}$;
- \rightarrow Finding a subset *S* that maximizes Eq. 2:

$$f(\mathcal{S}) = \sum_{x \in X} \max_{u \in \mathcal{S}} w(x, u), \text{ where } \mathcal{S} \subseteq \mathcal{U}, \ \mathcal{U} \cap X = \emptyset$$

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

Algorithm 1: Simple coreset sampling from open-set

1 **Require:** E_{θ} : encoder pretrained on X; **2 Require:** \mathcal{U}_0 : initial candidate set (open-set); **3 Require:** \mathcal{B} , τ : coreset budget, threshold; 4 initialize $\mathcal{I} \leftarrow \emptyset, t \leftarrow 0$; 5 replace $\hat{X} \leftarrow$ cluster centroids of X; 6 calculate $z_x, z_u \leftarrow E_{\theta}(x), E_{\theta}(u)$ for $\forall x, u \in \hat{X} \times \mathcal{U}_0$; 7 while $|\mathcal{I}| < \mathcal{B}$ do set S_t^* as the elements in U_t that are closest to 8 each element in \hat{X} (Eq. 2); $\mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{S}_t^*, \ \mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \mathcal{S}_t^*$ 9 $t \leftarrow t + 1$ 10 *// stopping criterion* 11 if $\hat{f}(\mathcal{S}_t^*) < \tau \cdot \hat{f}(\mathcal{S}_1^*)$ then 12 stop sampling; 13 end 14 15 end 16 re-initialize θ and pretrain E_{θ} with $X \cup \mathcal{I}$;

 \rightarrow Finding a subset *S* that maximizes Eq. 2:

$$\widehat{f}(S) = \sum_{x \in \widehat{X}} \max_{u \in S} w(x, u), \text{ where } S \subseteq U, \ U \cap X = \emptyset$$

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

Algorithm 1: Simple coreset sampling from open-set

1 **Require:** E_{θ} : encoder pretrained on X; **2 Require:** \mathcal{U}_0 : initial candidate set (open-set); **3 Require:** \mathcal{B} , τ : coreset budget, threshold; 4 initialize $\mathcal{I} \leftarrow \emptyset, t \leftarrow 0$; 5 replace $\hat{X} \leftarrow$ cluster centroids of X; 6 calculate $z_x, z_u \leftarrow E_{\theta}(x), E_{\theta}(u)$ for $\forall x, u \in \hat{X} \times \mathcal{U}_0$; 7 while $|\mathcal{I}| < \mathcal{B}$ do set S_t^* as the elements in U_t that are closest to 8 each element in \hat{X} (Eq. 2); $\mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{S}_t^*, \ \mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \mathcal{S}_t^*$ 9 $t \leftarrow t + 1$ 10 *// stopping criterion* 11 if $\hat{f}(\mathcal{S}_t^*) < \tau \cdot \hat{f}(\mathcal{S}_1^*)$ then 12 stop sampling; 13 end 14 15 end 16 re-initialize θ and pretrain E_{θ} with $X \cup \mathcal{I}$;

 \rightarrow Finding a subset S^{*} that maximizes Eq. 2:

$$\hat{f}(S) = \sum_{x \in \hat{X}} \max_{u \in S} w(x, u), \text{ where } S \subseteq \mathcal{U}, \ \mathcal{U} \cap X = \emptyset$$

We introduce a **sim**ple **core**set sampling algorithm, coined as **SimCore**.

Linear Evaluation Performance

For 11 fine-grained datasets, open-set does not always improve the performance.

			Target dataset (X) and its number of samples												
pretrain	n	Aircraft	Aircraft Cars Pet Birds Dogs Flowers Action Indoor Textures Faces												
	P	0,007	0,111	5,000	5,770	12,000	2,010	1,000	5,500	5,700	1,205	13,270			
X	-	46.56	55.42	59.23	29.27	49.88	80.14	43.76	54.10	58.78	56.63	87.99			
OS	-	41.50	41.86	67.66	33.21	49.94	85.67	60.65	64.46	67.23	52.84	86.14			
X + OS	-	39.88	42.92	68.22	32.88	50.42	85.34	60.61	63.66	67.98	52.76	85.90			

Linear Evaluation Performance

SimCore with certain sampling ratios has showed the performance gains.

			Target dataset (X) and its number of samples												
		Aircraft	Cars	Pet	Birds	Dogs	Flowers	Action	Indoor	Textures	Faces	Food			
pretrain	p	6,667	8,144	3,680	5,990	12,000	2,040	4,000	5,360	3,760	4,263	13,296			
X	-	46.56	55.42	59.23	29.27	49.88	80.14	43.76	54.10	58.78	56.63	87.99			
OS	-	41.50	41.86	67.66	33.21	49.94	85.67	60.65	64.46	67.23	52.84	86.14			
X + OS	-	39.88	42.92	68.22	32.88	50.42	85.34	60.61	63.66	67.98	52.76	85.90			
$X + OS_{rand}$	1%	48.24	49.26	64.27	31.90	49.62	83.17	47.25	55.37	61.33	57.37	88.08			
$X + OS_{\text{SimCore}^{\dagger}}$	1%	48.06	58.56	74.82	33.37	57.42	82.12	51.37	57.84	61.76	56.95	90.35			
X+OS _{SimCore}	1%	48.45	<u>59.00</u>	77.13	36.56	59.83	86.70	52.98	59.18	63.40	58.85	89.78			
$X + OS_{rand}$	5%	45.75	46.03	68.38	33.63	50.24	84.52	57.27	60.71	65.80	56.05	87.75			
$X + OS_{\text{SimCore}^{\dagger}}$	5%	45.57	50.75	<u>80.20</u>	35.56	64.62	85.11	64.53	68.13	66.22	58.93	89.87			
X+OS _{SimCore}	5%	47.14	52.22	81.75	39.21	66.82	87.28	<u>66.38</u>	70.96	68.13	59.34	<u>90.74</u>			

Linear Evaluation Performance

With a stopping criterion, SimCore automatically sample the enough amount of coreset.

			Target dataset (X) and its number of samples												
		Aircraft	Cars	Pet	Birds	Dogs	Flowers	Action	Indoor	Textures	Faces	Food			
pretrain	p	6,667	8,144	3,680	5,990	12,000	2,040	4,000	5,360	3,760	4,263	13,296			
X	-	46.56	55.42	59.23	29.27	49.88	80.14	43.76	54.10	58.78	56.63	87.99			
OS	-	41.50	41.86	67.66	33.21	49.94	85.67	60.65	64.46	67.23	52.84	86.14			
X + OS	-	39.88	42.92	68.22	32.88	50.42	85.34	60.61	63.66	67.98	52.76	85.90			
$X + OS_{rand}$	1%	48.24	49.26	64.27	31.90	49.62	83.17	47.25	55.37	61.33	57.37	88.08			
$X + OS_{\text{SimCore}^{\dagger}}$	1%	48.06	58.56	74.82	33.37	57.42	82.12	51.37	57.84	61.76	56.95	90.35			
X+OS _{SimCore}	1%	48.45	<u>59.00</u>	77.13	36.56	59.83	86.70	52.98	59.18	63.40	58.85	89.78			
$X + OS_{rand}$	5%	45.75	46.03	68.38	33.63	50.24	84.52	57.27	60.71	65.80	56.05	87.75			
$X + OS_{\text{SimCore}^{\dagger}}$	5%	45.57	50.75	<u>80.20</u>	35.56	64.62	85.11	64.53	68.13	66.22	58.93	89.87			
X+OS _{SimCore}	5%	47.14	52.22	81.75	39.21	66.82	87.28	<u>66.38</u>	<u>70.96</u>	68.13	59.34	<u>90.74</u>			
Stopping Crite	rion	1.03%	0.95%	14.4%	13.7%	9.72%	7.96%	15.6%	13.5%	5.89%	0.27%	3.86%			
X+OS _{SimCore}	-	48.27	60.29	79.66	37.65	66.48	87.04	67.46	71.95	67.66	59.01	91.31			

Robustness of SimCore

SimCore is robust to various architectures and SSL methods.

method	architecture	pretrain	Aircraft	Cars	Pet	Birds	method	architecture	pretrain	Aircraft	Cars	Pet	Birds
SimCLR	EfficientNet	X	25.5	37.0	58.1	27.8	BYOL	ResNet50	X	40.6	49.4	56.5	27.6
SimCLR	EfficientNet	OS	31.6	29.5	57.8	26.5	BYOL	ResNet50	OS	46.1	49.6	78.4	44.7
SimCLR	EfficientNet	SimCore	41.7	52.8	69.5	29.6	BYOL	ResNet50	SimCore	46.5	50.4	85.1	47.9
SimCLR	ResNet18	X	43.4	51.9	58.2	25.9	SwAV	ResNet50	X	34.5	42.4	49.4	21.6
SimCLR	ResNet18	OS	33.9	33.1	62.5	27.7	SwAV	ResNet50	OS	33.8	30.0	64.2	27.3
SimCLR	ResNet18	SimCore	44.5	55.1	72.7	31.3	SwAV	ResNet50	SimCore	45.0	45.1	80.2	36.6
SimCLR	ResNeXt50	X	45.9	56.5	63.4	28.6	DINO	ViT-Ti/16	X	27.3	48.2	42.4	28.5
SimCLR	ResNeXt50	OS	39.2	39.4	68.2	32.6	DINO	ViT-Ti/16	OS	42.0	39.1	78.4	61.2
SimCLR	ResNeXt50	SimCore	49.5	59.5	81.0	37.4	DINO	ViT-Ti/16	SimCore	43.2	47.2	83.3	72.6
SimCLR	ResNet101	X	49.4	54.5	64.0	29.1	MAE	ViT-B/16	X	55.9	44.7	56.3	32.2
SimCLR	ResNet101	OS	40.4	41.9	69.5	34.2	MAE	ViT-B/16	OS	39.8	37.3	68.3	31.4
SimCLR	ResNet101	SimCore	50.9	58.8	83.0	39.1	MAE	ViT-B/16	SimCore	48.1	52.4	77 . 8	42.1

Various Open-Sets

With curated open-sets, SimCore can sample relevant coresets.

Qualitative Evaluation

We visualized selected samples of Places365 (top) and iNaturalist coreset (bottom).

Lawn

Cemetery

Kinosternon Flavescens

Morone Saxatilis

Ortalis Wagleri

Deppei

Oenanthe Familiaris

Qualitative Evaluation

SimCore with larger k centroids could sample the similar classes samples.

Downstream Tasks

SimCore outperforms baselines on various downstream tasks.

	Airc	craft	Ca	urs	I	Pet	Bir	ds		1	Aircr	aft		Cars			Pet			Birds	2
pretrain	20	200	20	200	20	200	20	200	pretrain	10%	20%	50%	10%	20%	50%	10%	20%	50%	10%	20%	50%
X	36.1	36.7	33.1	34.3	52.0	51.8	20.7	21.8	X	29.0	47.6	64.6	5 25.1	53.5	80.2	47.2	58.7	71.4	13.3	25.2	51.2
OS	19.3	17.7	11.4	10.9	50.4	49.0	13.9	15.1	OS	19.6	34.	43.9	10.8	35.7	74.1	35.7	62.3	76.9	10.1	21.0	51.2
SimCore	40.7	41.4	33.8	34.6	61.4	61.4	18.3	19.2	SimCore	33.9	51.3	65.6	25.4	55.3	81.6	50.9	70.4	79.7	11.9	25.5	55.7
		(a) k	NN cl	assific	ation							((b) Sem	i-supe	rvised	learn	ing				
	Ai	rcraft		Cars	8	P	et	Bi	rds			Air	craft		Cars			F	aces		
pretrain	mAP	mAP ₅	0 mA	P m.	AP ₅₀	IoU _{fg}	IoU_{bg}	IoU _{fg}	IoU _{bg}	pretrai	n	mfr.	family	brar	nd ty	ype	pointy	oval	you	ng sm	niling
X	10.8	12.7	34.	.7 4	0.0	79.1	82.0	65.3	92.6	X		21.1	40.4	67.	3 7	8.0	66.8	83.4	93.	9	93.4
OS	23.7	27.0	20.	.8 2	23.6	79.8	82.8	67.9	93.3	OS		17.9	35.2	49.	3 6	1.3	64.9	81.9	92.	8	36.3
SimCore	29.6	36.8	37.	.6 4	3.2	80.0	83.1	68.4	93.4	SimCo	ore	21.9	41.9	70.	78	0.1	67.5	83.9	93.	5 9	93.7

(c) Object detection and pixel-wise segmentation

(d) Multi-attribute classification

Comparisons to Open-Set Framework

We have compared our OpenSSL framework to two different frameworks, which utilize unlabeled or noisy-labeled open-sets.

	framework:	Open-S	et Sem	framework: Webly Sup.						
pretrain	method	Aircraft	Cars	Birds	method	Aircraft	Cars	Birds		
SimCore	FT (50%)	73.5	80.1	57.4	FT (100%)	84.3	89.3	70.6		
X	SelfTrain	51.9	55.5	35.7	CoTeach	79.3	51.7	70.4		
SimCore	SelfTrain	78.1	81.3	59.1	CoTeach	89.8	57.0	78.9		
x	OpenMatch	70.1	70.2	52.3	DivideMix	82.2	54.4	74.5		
SimCore	OpenMatch	83.5	89.5	66.4	DivideMix	86.5	56.5	80.0		

Comparisons to Open-Set Framework

We have compared our OpenSSL framework to two different frameworks, which utilize unlabeled or noisy-labeled open-sets.

	framework:	Open-S	et Sem	framework: Webly Sup.						
pretrain	method	Aircraft	Cars	Birds	method	Aircraft	Cars	Birds		
SimCore	FT (50%)	73.5	80.1	57.4	FT (100%)	84.3	89.3	70.6		
X	SelfTrain	51.9	55.5	35.7	CoTeach	79.3	51.7	70.4		
SimCore	SelfTrain	78.1	81.3	59.1	CoTeach	89.8	57.0	78.9		
x	OpenMatch	70.1	70.2	52.3	DivideMix	82.2	54.4	74.5		
SimCore	OpenMatch	83.5	89.5	66.4	DivideMix	86.5	56.5	80.0		

- 1. When the SimCore model is simply fine-tuned on each target, it outperforms others.
- 2. SimCore can synergize with both frameworks, serving as an effective initialization.

Thank You!

Please check our paper and come to TUE-PM-326 :)

Sungnyun Kim: ksn4397@kaist.ac.kr

Sangmin Bae: bsmn0223@kaist.ac.kr