

M⁶Doc: A Large-Scale Multi-Format, Multi-Type, Multi-Layout, Multi-Language, Multi-Annotation Category Dataset for Modern

Document Layout Analysis

Hiuyi Cheng¹, Peirong Zhang¹, Sihang Wu², Jiaxin Zhang¹,

Qiyuan Zhu², Zecheng Xie², Jing Li², Kai Ding³, and Lianwen Jin¹

¹South China University of Technology, ²Huawei Cloud Computing Technologies Co., Ltd.

³IntSig Information Co., Ltd.

{eechenghiuyi, eeprzhang, msjxzhang}@mail.scut.edu.cn {wusihang2, zhuqiyuan2, xiezecheng1, lijing260}@huawei.com eelwjin@scut.edu.cn danny ding@intsig.net

Paper

M⁶Doc Github Homepage

Background

Document layout analysis (DLA): is a crucial step in digital systems that aims to decompose page images into homogeneous regions, such as text, images, and tables.

Difficulties in the task of document layout analysis include:

- **Document diversity** (including document variety in terms of format, type, layout, and language).
- Document image quality diversity.
- Mutual influence between elements in documents.
- Ambiguity in document elements.

Motivation

Limitations of currently available modern document datasets:

- **Small dataset scale**. Most datasets only containing a few hundred images.
- Only PDF document format, which poses a significant challenge for evaluating the effectiveness of DLA methods in real-world scenarios.
- Severe lack of diversity, which will affect the development of routine layout analysis in multiple fields.
- Limited document languages. DLA methods may encounter domain shift problems in different languages, which remain unexplored.
- Few annotation categories, which prevents more granular layout information extraction.

Contributions

In this paper, we presents a modern dataset and method for document layout analysis.

- 1. We have constructed and public the M⁶Doc dataset, which is a modern document dataset that supports multiple formats, types, layouts, languages, and annotation categories.
- 2. M⁶Doc is the first layout analysis dataset that contains both real-world (photographed and scanned) and born-digital document images. Additionally, it is the first dataset that includes Chinese documents.
- 3. M⁶Doc contains the most fine-grained logical layout analysis categories. It can serve as a benchmark for several related tasks, such as logical layout analysis, formula recognition, and table analysis.
- 4. We propose the TransDLANet, a Transformer-based method for DLA.

Overview

Dataset Description

M⁶ designation represents six properties:

- Multi-Format: scanned, photographed, and PDF documents;
- Multi-Type: scientific articles, textbooks, books, test papers, magazines, newspapers, and notes;
- Multi-Layout: rectangular, Manhattan, non-Manhattan, and multi-column Manhattan:
- Multi-Language: Chinese and English;
- Multi-Annotation Category: 74 types of annotation labels with 237,116 annotation instances in 9,080 manually annotated pages;
- Modern documents.

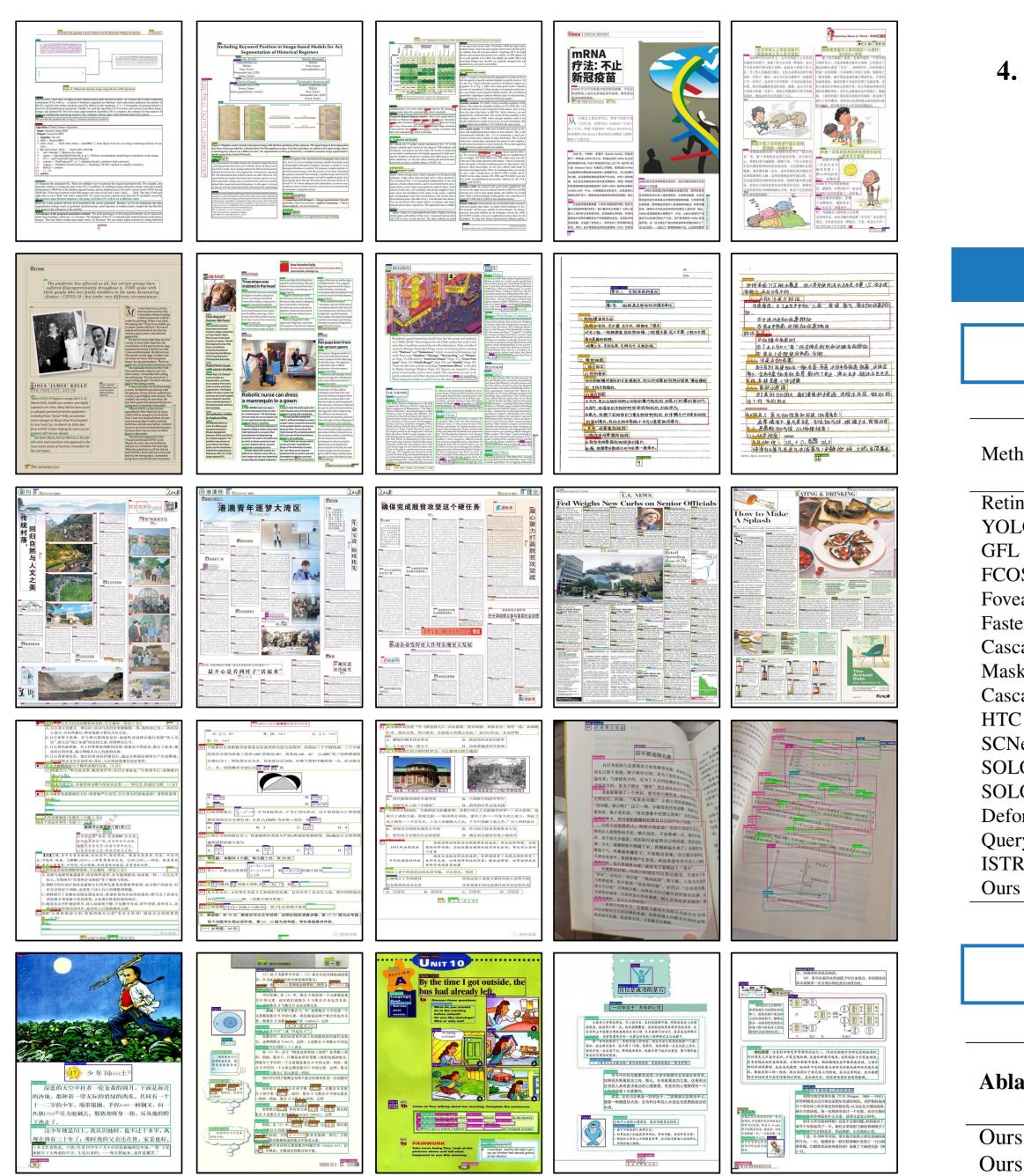


Figure 1. Example annotations of the M⁶Doc.

Tra	ans
1.	C
	ir
2.	Τ
	a
	V
	n
	a
	e
3.	D
	tł
	0
4.	S
	tł
	b
	S
	re

L			

Method

RetinaNe YOLOv3 GFL [18] FCOS [3 FoveaBo Faster R-Cascade Mask R-0 Cascade HTC [5] SCNet [3 SOLO [3 SOLOv2 Deformal QueryIns ISTR [1 Ours

A

			oject	Instance			
Ablation study		Dete	ection	Segmentation			
	mAP	AP50	AP75	Recall	mAP	AP50	AP75
Ours, w/o Transformer encoder	47.8	62.6	54.4	65.4	47.3	62.6	53.9
Ours, w/o Dynamic decoder	52.8	70.5	48.0	73.9	52.3	70.4	47.6
Ours, w/o Shared_MLP	64.2	82.3	72.1	74.1	63.6	82.2	71.2
Ours	64.5	82.7	72.7	74.9	63.8	82.6	71.9

Methodology

sDLANet contains four main components: **CNN-based backbone**: extract document mage features.

encoder: performs self-**Fransformer** attentive feature learning on query embedding vectors and uses an adaptive element natching mechanism to further enhance the association between document instances encoded by the query vectors.

Dynamic decode: fuses the query vector with the features of the bounding box image region obtained by the query vector using RoIAlign.

Shared parameter MLP branches: decodes he classification confidence, the bounding oxes' coordinate position, and the segmentation mask of the document instance egion.

Object query ^{双边投資推来通勢增长 数字→叠→路谱加示大} 中智携手深化务实合作 ResNet **___** "助力乌干达青年提升职业技能" RoIAlign Image

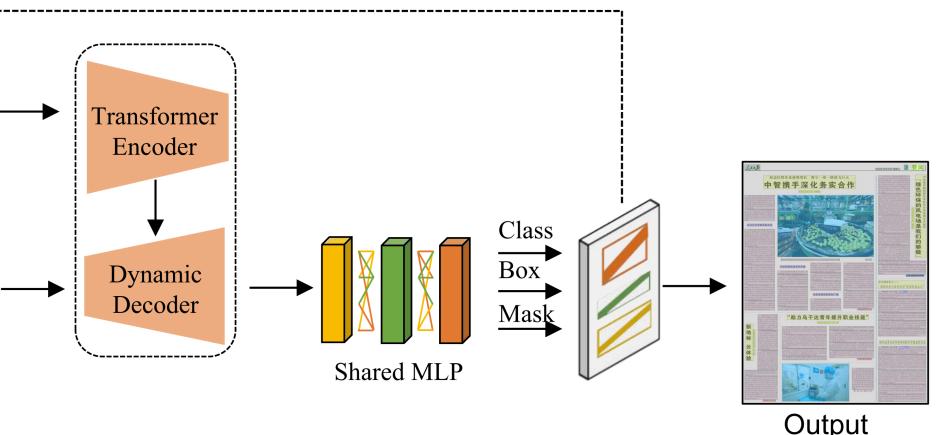
Figure 2. The pipeline of TransDLANet.

Performance comparisons on M⁶Doc

			Ob	oject			Instance	
l	Backbone		Dete	ection		Se	gmentati	on
		mAP	AP50	AP75	Recall	mAP	AP50	AP75
let [19]	ResNet-101	21.4	33.1	23.3	37.4	21.0	33.0	22.6
/3 [31]	DarkNet-53	59.8	75.6	68.1	72.4	-	-	-
8]	ResNet-101	34.7	50.8	38.7	48.7	33.8	50.6	37.0
[35]	ResNet-101	40.6	59.3	45.9	59.5	39.3	58.9	43.1
ox [14]	ResNet-101	45.1	66.1	51.7	59.4	43.7	65.8	49.2
R-CNN [32]	ResNet-101	49.0	67.8	57.2	57.2	47.8	67.8	55.2
e R-CNN [3]	ResNet-101	54.1	70.4	62.3	61.4	52.7	70.2	60.1
-CNN [9]	ResNet-101	40.1	58.4	46.2	50.8	39.7	58.4	45.6
e Mask R-CNN [3]	ResNet-101	54.4	70.5	62.9	62.1	52.9	70.4	60.6
]	ResNet-101	58.2	74.3	67.2	68.1	57.1	74.4	65.7
[36]	ResNet-101	56.1	73.5	65.1	67.3	55.3	73.3	63.6
[37]	ResNet-101	38.7	56.0	42.7	54.9	38.7	56.3	43.0
2 [38]	ResNet-101	46.8	67.5	51.4	61.5	48.3	67.5	53.4
able DETR [45]	ResNet-101	57.2	76.8	63.4	75.2	55.6	76.5	61.1
nst [<mark>8</mark>]	ResNet-101	51.0	67.1	58.1	71.0	50.6	67.4	57.5
[1]	ResNet-101	62.7	80.8	70.8	73.2	62.0	80.7	70.2
	ResNet-101	64.5	82.7	72.7	74.9	63.8	82.6	71.9

Ablation study for different components

Experimental Results

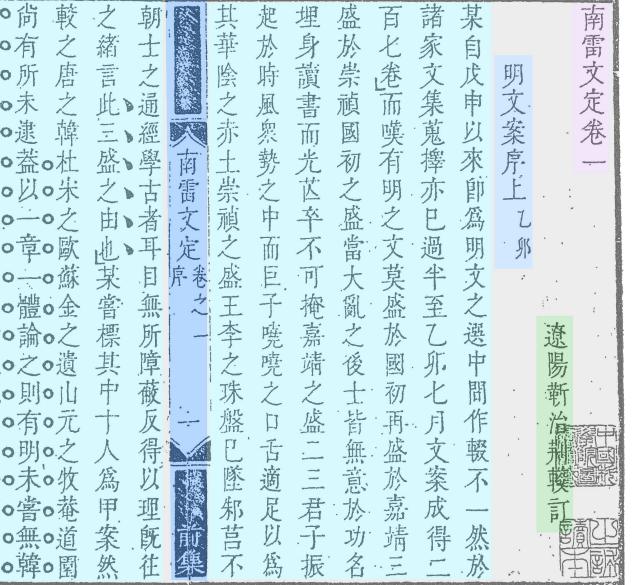


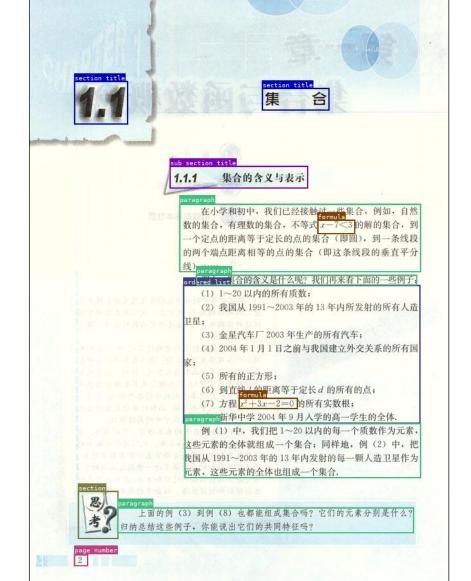
DocLayNet

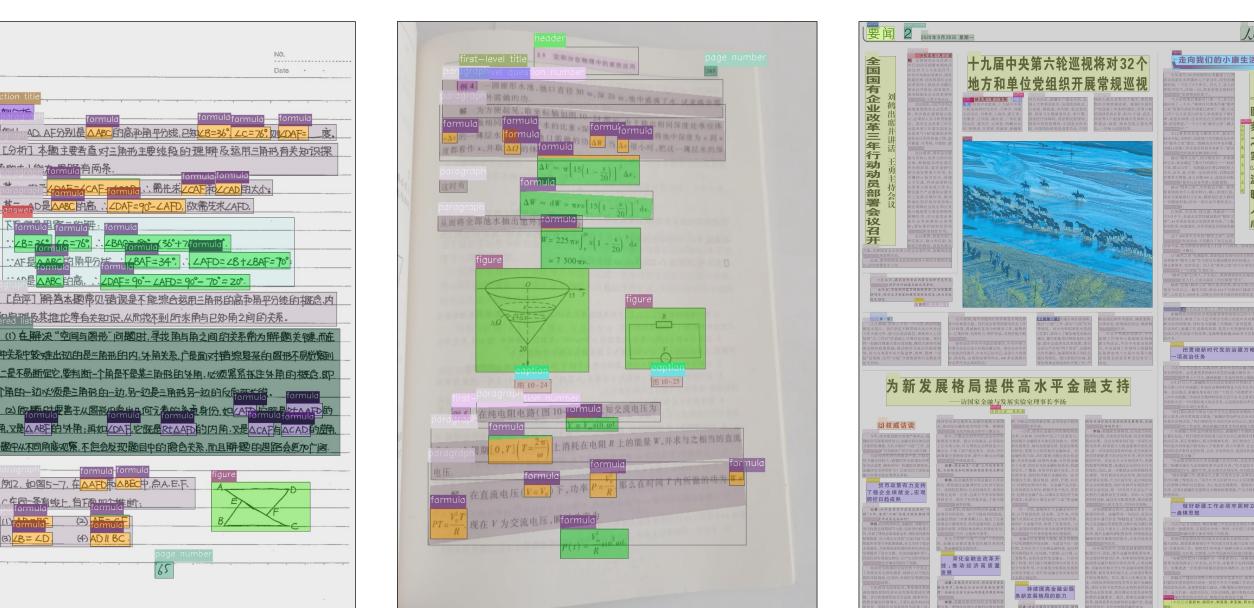
K iterations of refine document instance

TransDLANet results on different datasets

PubLayNet

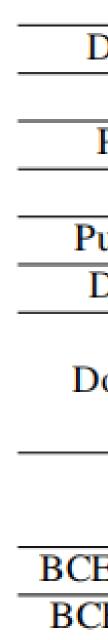

Document Layout Analysis (DLA) is a key step in the digitization system, which aims to decompose page images into homogeneous regions, such as text, images, tables, etc.


(4) Ambiguity in document elements.


204			
	餘此之	人。	韓。社
	以、無、合		
	為、他、作	議	歐o蘇o
	古、三、時	者	蘇o遺。
	文百文	以	溃o山
	其下年、境	震	山。牧
	不、人、界	ĴI	牧o菴
	能、士、間	原	带o道
	盡、之、或	明	道。圉
	如、精、闌	文	閣o之
	前神八	第	之。文
	代、專、較		
	之、注、之		
	盛、於、朱	矣	明o就
1	者、場、景		
1.1 B 0.21	無、虚、源		
Million of	足、之、尚	法	省一
	収、 造、不	· +1-	右。家
1.122.1	也、割、能	叙	其o则
and a state	也割能前其及	事	一一一切
	Transformer - adjance and a		

Background

Difficulties in the task of document layout analysis include: (1) Document diversity (including document variety in terms of format, type, layout, and language). (2) Document image quality diversity (including distortion, varying illumination, and blur). (3) Mutual influence between elements in documents.



There are certain limitations associated with existing datasets for layout analysis. (1) Small size. Early DLA datasets were small-scale and contained only hundreds of images. (2) Limited document format. The formats of current public large-scale datasets are all PDF documents. It presents a huge challenge to evaluate the effectiveness of different methods in realistic scenarios. (3) Limited document diversity. The lack of style diversity would prejudice the development of multi-domain general layout analysis. (4) Limited document languages. DLA methods may encounter domain shift problems in different languages, which remain unexplored. (5) Few annotation categories. The annotation categories of current datasets are not sufficiently fine-grained, preventing more

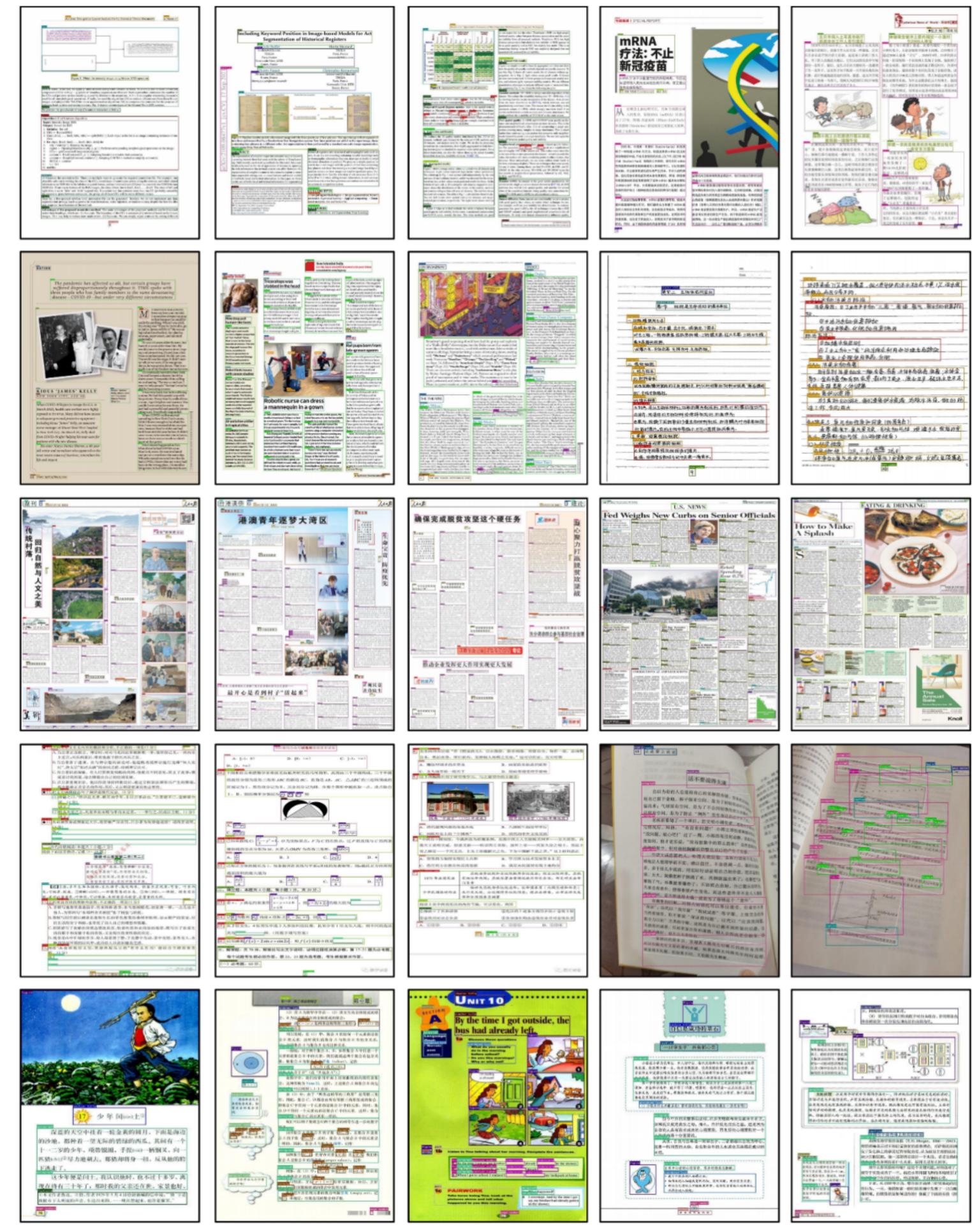
granular layout information extraction.

Motivation

Dataset	#Image	#Class	#Instance	A.M.	Format	Document Type	Language	
DSSE200 [41]	200	6	-	Automatic	PDF	Magazines, Academic papers.	English	
DAD [23]	5,980	5	90,923	Automatic	PDF	Articles	English	
PubMed [16]	12,871	5	257,830	Automatic	PDF	Articles	English	
Chn [16]	8,005	5	203,456	Automatic PDF Chinese Wikipedia pages		Automatic PDF		Chinese
PubLayNet [44]	360K	5	3,311,660	Automatic PDF Articles		English		
DocBank [17]	500K	13	-	Automatic	PDF	PDF Articles		
DocLayNet [29]	80,863	11	1,107,470	Manual	PDF	Financial Reports, Manuals, Scientific Articles, Laws & Regulations, Patents, Government Tenders.	English, German French, Japanese	
PRImA [1]	305	10	-	Automatic	Scanned	Magazine, Technical article, Forms, Bank statements, Advertisements	English	
E-Arabic-v1 [33]	1,833	3	-	Automatic	Scanned	Arabic books	Arabic	
CE-Arabic-v2 [7]	9,000	21	-	Automatic	Scanned	Arabic books	Arabic	
M ⁶ Doc (Ours)	9,080	74	237,116	Manual	PDF, Scanned, Photographed	Scientific articles, Textbooks, Books, Test papers, Magazines, Newspapers, Notes	English, Chinese	

The M⁶ designation represents six properties: (1) Multi-Format (including scanned, photographed, and PDF documents);

(2) Multi-Type (such as scientific articles, textbooks, books, test papers, magazines, newspapers, and notes); (3) Multi-Layout (rectangular, Manhattan, non-Manhattan, and multi-column Manhattan);


(4) Multi Language (Chinese and English);

(5) Multi-Annotation Category (74 types of annotation labels with 237,116 annotation instances in 9,080 manually annotated pages);

(6) Modern documents.

M⁶DOC is the first DLA dataset to consider real-world documents and include the most detailed manual annotations, consisting of 9,080 document images and 237,116 annotated instances.

M⁶Doc Dataset

Data sources include but are not limited to: ¹https://arxiv.org/ ²http://paper.people.com.cn/ ³https://vk.com/

M⁶Doc Github Homepage 74 detailed document annotation labels.

- (1) the commonality of annotation labels between different document types,
- (2) the specificity of labels between different document types, (3) the frequency of labels,
- (4) the recognition of independent pages.

We first unified the labels between different documents to the maximum extent and then defined the labels for certain document types for differentials. Commonality and specificity ensure that the defined labels can adapt to multiple document types, which implies that a more detailed logical layout analysis for a certain type of document can be performed. It differs from how labels are defined in DocBank, PubLayNet, and DocLayNet, which all ignore defining specific labels for different document types.

Label Definition

The key factors in selecting these annotation labels include:

Category

background QR code advertisement algorithm answer author barcode bill blank bracket breakout byline caption catalogue chapter title code correction credit dateline drop cap editor's note endnote examinee information fifth-level title figure first-level question number first-level title flag folio footer footnote formula fourth-level section title fourth-level title header headline index inside

	Traini	ing	Valid	ate	Test	t	Catagori	Train	ing	Valid	ate	Tes	t
	Number	%	Number	%	Number	%	Category	Number	%	Number	%	Number	%
	0	0.000	0	0.000	0	0.000	institute	60	0.042	9	0.039	28	0.040
	59	0.041	15	0.065	23	0.032	jump line	381	0.266	63	0.271	180	0.254
	257	0.180	45	0.194	145	0.205	kicker	516	0.361	91	0.392	257	0.363
	12	0.008	3	0.013	12	0.017	lead	664	0.464	109	0.470	285	0.402
	165	0.115	30	0.129	77	0.109	marginal note	238	0.166	37	0.159	101	0.143
	2,424	1.695	403	1.736	1,188	1.676	matching	7	0.005	1	0.004	8	0.011
	10	0.007	1	0.004	3	0.004	mugshot	73	0.051	11	0.047	46	0.065
	3	0.002	2	0.009	3	0.004	option	3,198	2.236	515	2.219	1,577	2.225
	189	0.132	58	0.250	90	0.127	ordered list	1,012	0.707	172	0.741	510	0.720
	863	0.603	164	0.707	273	0.385	other question number	42	0.029	3	0.013	31	0.044
	411	0.287	72	0.310	188	0.265	page number	4,782	3.343	803	3.460	2,383	3.363
	1,276	0.892	185	0.797	660	0.931	paragraph	65,642	45.891	10,575	45.562	33,069	46.664
	3,508	2.452	605	2.607	1,766	2.492	part	524	0.366	89	0.383	283	0.399
	39	0.027	10	0.043	19	0.027	play	10	0.007	3	0.013	2	0.003
	245	0.171	33	0.142	124	0.175	poem	98	0.069	18	0.078	33	0.047
	62	0.043	7	0.030	31	0.044	reference	149	0.104	23	0.099	62	0.087
	9	0.006	1	0.004	6	0.008	sealing line	3	0.002	2	0.009	5	0.007
	1,523	1.065	255	1.099	728	1.027	second-level question number	2,773	1.939	377	1.624	1,330	1.877
	901	0.630	140	0.603	482	0.680	second-level title	273	0.191	48	0.207	140	0.198
	414	0.289	71	0.306	234	0.330	section	2,508	1.753	408	1.758	1,228	1.733
	39	0.027	4	0.017	9	0.013	section title	897	0.627	171	0.737	442	0.624
	35	0.024	4	0.017	19	0.027	sidebar	54	0.038	10	0.043	27	0.038
	8	0.006	2	0.009	6	0.008	sub section title	567	0.396	107	0.461	269	0.380
	13	0.009	2	0.009	20	0.028	subhead	1,998	1.397	394	1.698	1,069	1.508
	7,614	5.323	1,242	5.351	3,762	5.309	subsub section title	101	0.071	21	0.090	71	0.100
ber	5,669	3.963	930	4.007	2,740	3.866	supplementary note	986	0.689	158	0.681	487	0.687
	586	0.410	81	0.349	292	0.412	table	821	0.574	146	0.629	409	0.577
	30	0.021	5	0.022	12	0.017	table caption	287	0.201	41	0.177	143	0.202
	1,442	1.008	213	0.918	685	0.967	table note	8	0.006	2	0.009	5	0.007
	1,984	1.387	310	1.336	987	1.393	teasers	32	0.022	7	0.030	7	0.010
	295	0.206	49	0.211	139	0.196	third-level question number	240	0.168	36	0.155	102	0.144
	1,3090	9.151	2,058	8.867	6,191	8.736	third-level title	146	0.102	44	0.190	94	0.133
	15	0.010	3	0.013	19	0.027	title	201	0.141	35	0.151	100	0.141
	70	0.049	13	0.056	66	0.093	translator	73	0.051	11	0.047	38	0.054
	1,877	1.312	297	1.280	969	1.367	underscore	3,687	2.578	590	2.542	1,717	2.423
	4,115	2.877	643	2.770	1,981	2.795	unordered list	497	0.347	84	0.362	271	0.382
	214	0.150	36	0.155	100	0.141	weather forecast	10	0.007	3	0.013	3	0.004
	16	0.011	1	0.004	5	0.007	Total	143,040	100	23,210	100	70,866	100

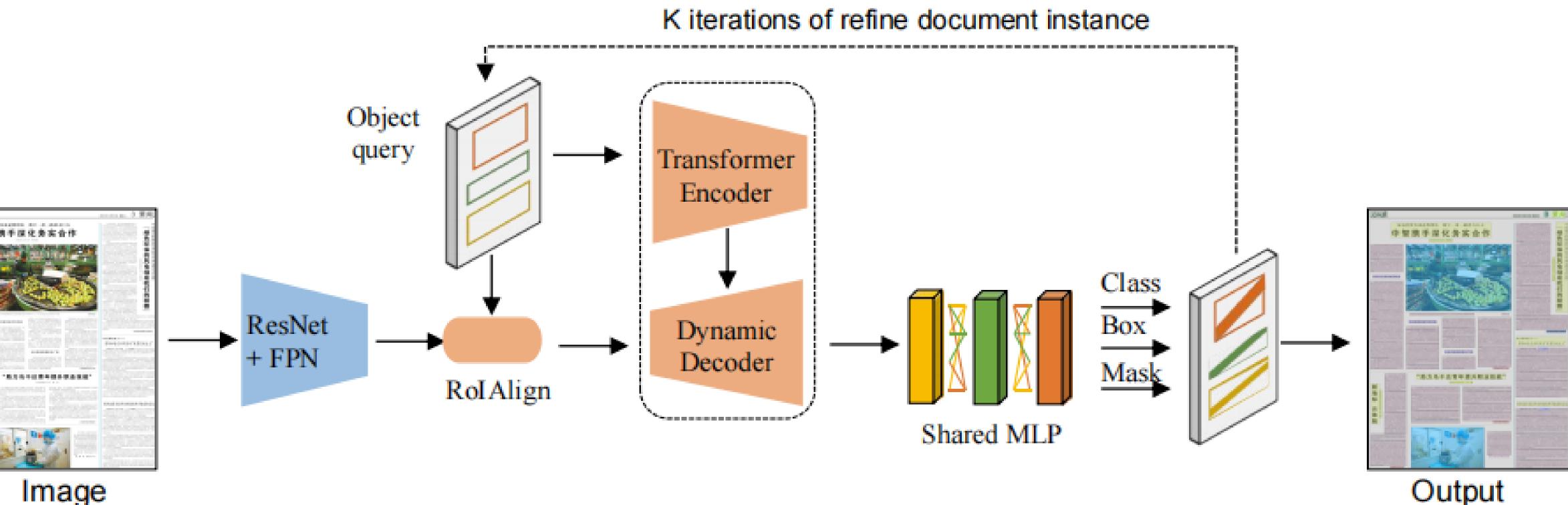
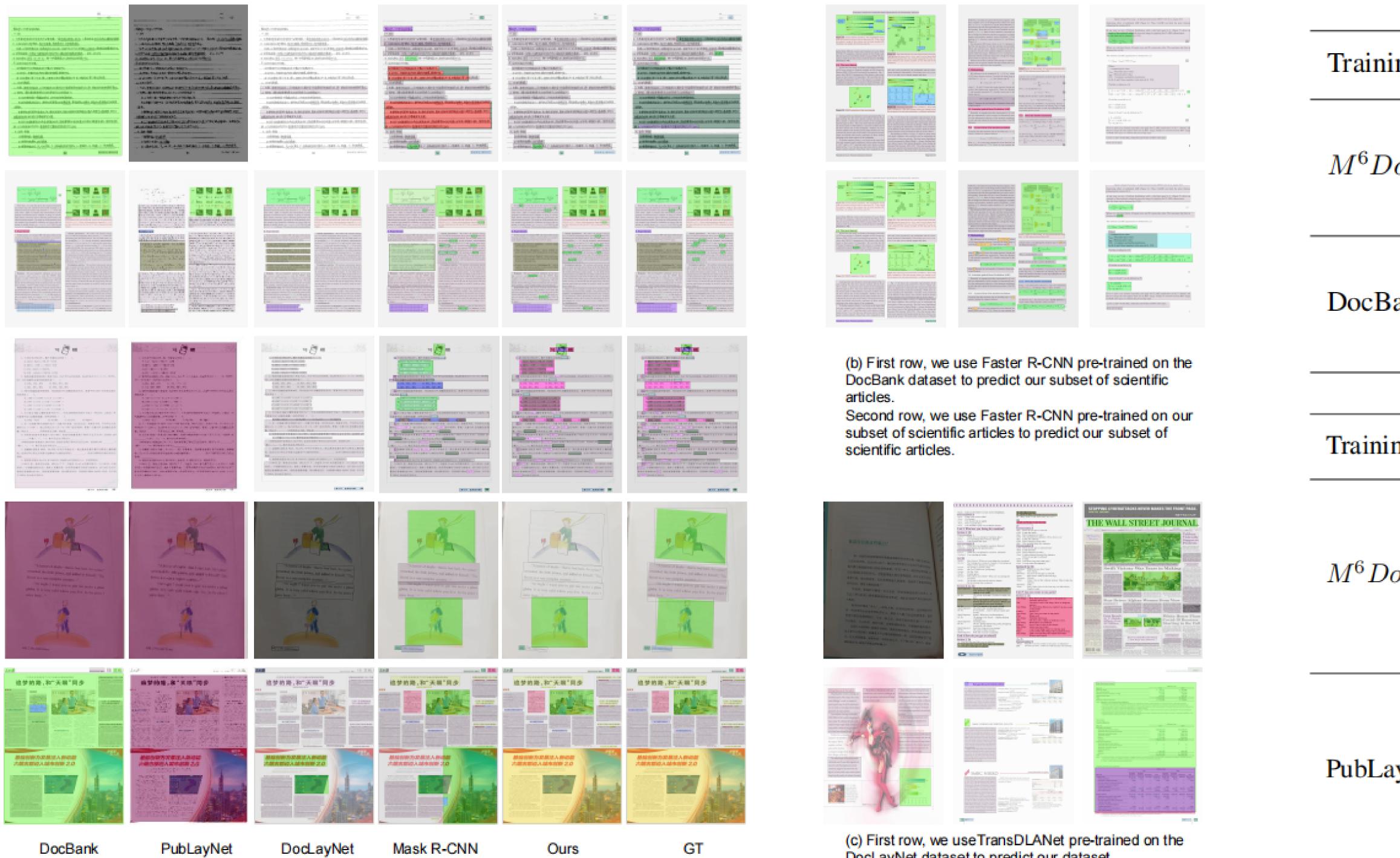


Figure 2. The pipeline of TransDLANet contains four main components: 1) a CNN-based backbone; 2) a transformer encoder; 3) a dynamic decoder that decodes the instance-level features; and 4) three shared multi-layer perceptron(MLP) branches that obtain the classification confidence, bounding boxes, and segmentation mask of the document instance region.

- (1) Backbone: extracts features.



(2) Transformer encoder: used as a position-encoding free feature fusion method for learning the relationship between query vectors. Meanwhile, with an adaptive element matching mechanism, the query embedding is better matched with real annotations. (3) Dynamic interactive: decoding module fuses and interacts the query vectors with the bounding box image region features. (4) Shared parameter MLP: performs both detection and segmentation to achieve more accurate document instance segmentation.

Datasets: M⁶Doc, DocBank [1], PubLayNet [2], and DocLayNet [3]. Significance of M⁶Doc

(a) The first three columns on the left show the results obtained by our proposed TransDLANet on our dataset, trained separately on Docbank, PubLayNet, and DocLayNet. The fourth and fifth columns present the results obtained using Mask R-CNN and our TransDLANet, both trained on our dataset.

[1] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou. DocBank: A Benchmark Dataset for Document Layout Analysis. In ICCL, pages 949–960, 2020. [2] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: Largest dataset ever for document layout analysis. In ICDAR, pages 1015–1022, 2019. [3] Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S Nassar, and Peter W J Staar. DocLayNet: A Large Human Annotated Dataset for Document-Layout Analysis. In ACM SIGKDD, page 3743–3751, 2022.

Experimental results and analysis

DocLayNet dataset to predict our dataset. Second row, we use TransDLANet pre-trained on our dataset to predict the DocLayNet dataset.

Cross-validation experiments

ning on	labels	Test	ing on		Training on	labola	Tes	ting on
ining Off	labels	$M^6 Doc$	DocBank		Caption61.9Footnote70.2Formula47.7Page-footer71.0Page-header71.1Picture75.4Section-header73.2Table78.0Text80.0Title71.1mAP69.96Caption13.2Footnote7.0Formula2.5Page-footer8.2DocLayNetPage-header0.8Picture40.1Section-header1.6Table39.2Text45.8Title3.6	DocLayNet		
	figure	69.77	42.67	i		Caption	61.9	12.7
Doc	table	72.57	43.29			Footnote	70.2	5.8
200	title	58.16	36.47			Formula	47.7	9.0
	mAP	66.83	40.81			Page-footer	71.0	8.0
	figure	20.70	58.47		$M^6 Doc$	Page-header	71.1	3.2
Bank	table	18.01	62.98			Picture	75.4	30.0
Dank	title	7.26	83.70			Section-header	73.2	5.0
	mAP	15.32	68.38			Table	78.0	34.2
						Text	80.0	26.2
	labela	Test	ing on			Title	71.1	0.4
ning on	labels	M^6Doc	PubLayNet			mAP	69.96	13.45
	Text	72.56	60.21	· · ·		Caption	13.2	68.2
	Title	63.50	53.26			Footnote	7.0	74.7
Doc	List	38.95	59.15			Formula	2.5	61.6
	Table	74.83	79.66			Page-footer	8.2	54.8
	Figure	74.23	62.45		DocLayNet	0	0.8	68.2
	mAP	64.81	62.94		•	Picture	40.1	68.5
	Text	20.46	94.26			Section-header	1.6	69.8
	Title List	12.92 7.41	89.20 95.18			Table	39.2	82.4
layNet	Table	12.98	97.21					83.8
	Figure	8.39	96.62					81.7
	mAP	12.43	94.49			mAP	16.20	71.37

Ablation study for TransDLANet

TT 1 1 0 A 1 1 C	. 1	c	1	1 11	1.		
Table 8. Ablation	stuay	for m	ask en	ibedair	ig air	ensio	n.
		Ob	ject			Instance)
Ablation study		Dete	ction		Se	gmentati	ion
	mAP	AP50	AP75	Recall	mAP	AP50	AP75
embedding dimension = 20	63.2	81.0	72.0	74.0	62.7	80.9	71.3
embedding dimension = 40	64.5	82.7	72.7	74.9	63.8	82.6	71.9
embedding dimension = 60	63.4	81.1	74.6	72.3	62.8	81.0	71.3
childedding difficiision – 00	05.4	01.1	74.0	12.5	02.0	01.0	/1.5
Table 9. Ablati	on st	udy fo	r diffe	rent co	mpone	ents.	
		-			1		
		()bject			Instance	
Ablation study			tection		S	egmentat	
Ablation study						¥	
	mAI	P AP50	AP75	Recall	mAP	AP50	AP75
Ours, w/o Transformer encoder				65.4	47.3	62.6	53.9
	47.8	62.6	54.4	0.0.4	T/	· · · · · ·	
Durs, w/o Dynamic decoder	52.8	70.5	48.0	73.9	52.3	70.4	47.6
Ours, w/o Dynamic decoder Ours, w/o Shared_MLP	52.8 64.2	70.5 82.3	48.0 72.1	73.9 74.1	52.3 63.6	70.4 82.2	47.6 71.2
Ours, w/o Dynamic decoder Ours, w/o Shared_MLP	52.8	70.5 82.3	48.0	73.9	52.3	70.4	47.6
Ours, w/o Dynamic decoder Ours, w/o Shared_MLP Ours	52.8 64.2	70.5 82.3	48.0 72.1	73.9 74.1	52.3 63.6	70.4 82.2	47.6 71.2

								Category	note_v1	note
TT 1 1 0 411 /	. 1	c	1	1 11	1.			answer	8.1	5.8
Table 8. Ablation	study	for ma	ask en	ibedair	ig ain	iensio	n.	bracket	0.0	-
								caption	0.0	0.1
								catalogue	19.2	14.
		Ob	ject			Instance	6	chapter title	18.0	18.
Ablation study		Dete	ction		Se	gmentat	ion	fifth-level title	2.4	parag
• _	mAP	AP50	AP75	Recall	mAP	AP50	AP75	figure	0.4	0.'
								first-level question number	0.0	-
mbedding dimension = 20	63.2	81.0	72.0	74.0	62.7	80.9	71.3	first-level title	13.6	parag
embedding dimension = 40	64.5	82.7	72.7	74.9	63.8	82.6	71.9	footer	62.5	58
embedding dimension $= 60$	63.4	81.1	74.6	72.3	62.8	81.0	71.3	formula	1.5	2.
infocuting dimension – 00	05.4	01.1	74.0	12.5	02.0	01.0	/1.5	fourth-level title	19.5	parag
								option	0.0	0
								ordered list	3.2	2.2
Table 9. Ablati	on str	idy foi	: diffe	ent co	mpon	ents.		page number	55.3	55
		•			L			paragraph	28.1	41
		•			ľ			part	28.1 0.0	41
		-			I.		e	part second-level question number	28.1 0.0 0.0	
A blation study		-	bject		-	Instance		part	28.1 0.0	41 0 -
Ablation study		- De	bject tection		S	Instance	tion	part second-level question number second-level title section	28.1 0.0 0.0 0.0 12.4	41 0 - parag
Ablation study	mAP	- De	bject tection	Recall	-	Instance		part second-level question number second-level title	$28.1 \\ 0.0 \\ 0.0 \\ 0.0$	41 0 - parag 1' 7
-		De AP50	bject tection		S	Instance	tion	part second-level question number second-level title section	28.1 0.0 0.0 12.4 9.3 5.1	41 0 - parag 1' 7
Ours, w/o Transformer encoder	47.8	C De AP50 62.6	bject tection AP75 54.4	Recall 65.4	- S mAP 47.3	Instance egmentat AP50 62.6	tion AP75 53.9	part second-level question number second-level title section section title sub section title supplementary note	$28.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 12.4 \\ 9.3 \\ 5.1 \\ 0.0$	41 0 parag 17 5. 0
Durs, w/o Transformer encoder Durs, w/o Dynamic decoder	47.8 52.8	C De AP50 62.6 70.5	bject tection AP75 54.4 48.0	Recall 65.4 73.9	- S mAP 47.3 52.3	Instance egmentat AP50 62.6 70.4	tion AP75 53.9 47.6	part second-level question number second-level title section section title sub section title supplementary note table	$28.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 12.4 \\ 9.3 \\ 5.1 \\ 0.0 \\ 22.7$	41
Durs, w/o Transformer encoder Durs, w/o Dynamic decoder Durs, w/o Shared_MLP	47.8 52.8 64.2	C De AP50 62.6 70.5 82.3	bject tection AP75 54.4 48.0 72.1	Recall 65.4 73.9 74.1	52.3 63.6	Instance egmentat AP50 62.6 70.4 82.2	tion AP75 53.9 47.6 71.2	part second-level question number second-level title section section title sub section title supplementary note	$28.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 12.4 \\ 9.3 \\ 5.1 \\ 0.0 \\ 22.7 \\ 25.8 $	41 0 - parag 1' 7 5. 0 17
Ours, w/o Transformer encoder Ours, w/o Dynamic decoder Ours, w/o Shared_MLP	47.8 52.8	C De AP50 62.6 70.5 82.3	bject tection AP75 54.4 48.0	Recall 65.4 73.9	- S mAP 47.3 52.3	Instance egmentat AP50 62.6 70.4	tion AP75 53.9 47.6	part second-level question number second-level title section section title sub section title supplementary note table	$28.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 12.4 \\ 9.3 \\ 5.1 \\ 0.0 \\ 22.7 \\ 25.8 \\ 0.0$	41 0 - parag 17 5. 0 17 parag
Ablation study Ours, w/o Transformer encoder Ours, w/o Dynamic decoder Ours, w/o Shared_MLP Ours	47.8 52.8 64.2	C De AP50 62.6 70.5 82.3	bject tection AP75 54.4 48.0 72.1	Recall 65.4 73.9 74.1	52.3 63.6	Instance egmentat AP50 62.6 70.4 82.2	tion AP75 53.9 47.6 71.2	part second-level question number second-level title section section title sub section title supplementary note table third-level title	$28.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 12.4 \\ 9.3 \\ 5.1 \\ 0.0 \\ 22.7 \\ 25.8 $	41 0 - parag 1 7 5. 0 17

Impact of Document Size

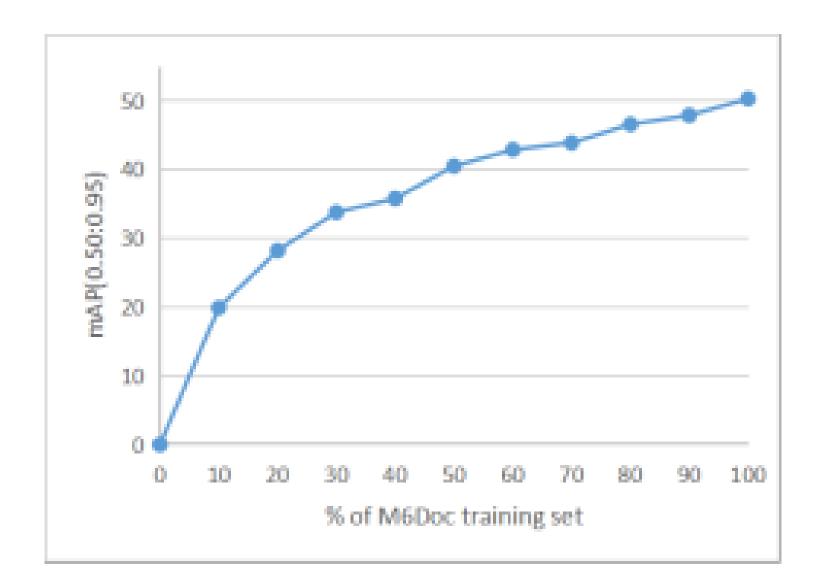


Figure 1. Mask R-CNN network with ResNet50 backbone trained on increasing fractions of the M^6Doc dataset.

Experimental results and analysis

Impact of Class Labels

Comparisons with object detection and instance segmentation methods

Table 3. Performance comparisons on $M^6 Doc$.

			Ob	oject			Instance	;
Method	Backbone		Dete	ection	Segmentation			
		mAP	AP50	AP75	Recall	mAP	AP50	AP75
RetinaNet [19]	ResNet-101	21.4	33.1	23.3	37.4	21.0	33.0	22.6
YOLOv3 [31]	DarkNet-53	59.8	75.6	68.1	72.4	-	-	-
GFL [18]	ResNet-101	34.7	50.8	38.7	48.7	33.8	50.6	37.0
FCOS [35]	ResNet-101	40.6	59.3	45.9	59.5	39.3	58.9	43.1
FoveaBox [14]	ResNet-101	45.1	66.1	51.7	59.4	43.7	65.8	49.2
Faster R-CNN [32]	ResNet-101	49.0	67.8	57.2	57.2	47.8	67.8	55.2
Cascade R-CNN [3]	ResNet-101	54.1	70.4	62.3	61.4	52.7	70.2	60.1
Mask R-CNN [9]	ResNet-101	40.1	58.4	46.2	50.8	39.7	58.4	45.6
Cascade Mask R-CNN [3]	ResNet-101	54.4	70.5	62.9	62.1	52.9	70.4	60.6
HTC [5]	ResNet-101	58.2	74.3	67.2	68.1	57.1	74.4	65.7
SCNet [36]	ResNet-101	56.1	73.5	65.1	67.3	55.3	73.3	63.6
SOLO [37]	ResNet-101	38.7	56.0	42.7	54.9	38.7	56.3	43.0
SOLOv2 [38]	ResNet-101	46.8	67.5	51.4	61.5	48.3	67.5	53.4
Deformable DETR [45]	ResNet-101	57.2	76.8	63.4	75.2	55.6	76.5	61.1
QueryInst [8]	ResNet-101	51.0	67.1	58.1	71.0	50.6	67.4	57.5
ISTR [11]	ResNet-101	62.7	80.8	70.8	73.2	62.0	80.7	70.2
Ours	ResNet-101	64.5	82.7	72.7	74.9	63.8	82.6	71.9

TransDLANet results on different datasets

Method	Backbone	Text	Title	List	Table	Figure	mAP
Faster R-CNN [32]	X101	91.0	82.6	88.3	95.4	93.7	90.2
Mask R-CNN [9]	X101	91.6	84.0	88.6	96.0	94.9	91.0
VSR [43]	X101	96.7	93.1	94.7	97.4	96.4	95.7
Ours	R101	94.3	89.21	95.2	97.2	96.6	94.5

Method	Backbone	Caption	Footnote	Formula	List-item	Page-footer	Page-header	Picture	Section-header	Table	Text	Title	mAP
Faster R-CNN [32]	R101	70.1	73.7	63.5	81.0	58.9	72.0	72.0	68.4	82.2	85.4	79.9	73.4
Mask R-CNN [9]	R50	68.4	70.9	60.1	81.2	61.6	71.9	71.7	67.6	82.2	84.6	76.7	72.4
Mask R-CNN [9]	R101	71.5	71.8	63.4	80.8	59.3	70.0	72.7	69.3	82.9	85.8	80.4	73.5
YOLOv5 [12]	v5x6	77.7	77.2	66.2	86.2	61.1	67.9	77.1	74.6	86.3	88.1	82.7	76.8
Ours	R101	68.2	74.7	61.6	81.0	54.8	68.2	68.5	69.8	82.4	83.8	81.7	72.3

Table 10. Performance comparisons on nine subsets of $M^6 Doc$.

		scientific article					magazine₋ch						magazine_en						
Method	Backbone	Object			Instance			Object			Instance				Object		Instance		
Wiethou		Detection		Segmentation		Detection			Segmentation			Detection			Segmentation				
		mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75
FCOS	ResNet-101	26.3	45.1	27.2	25.9	44.9	26.5	40.1	57.3	45.8	39.7	57.3	45.1	38.4	60.5	42.5	37.8	60.5	41.8
FoveaBox	ResNet-101	29.8	52.7	30.7	29.4	52.4	30.8	43.4	59.7	50.4	43.1	59.7	50.0	41.5	66.7	44.0	41.1	66.9	42.8
Faster R-CNN	ResNet-101	41.5	62.0	46.8	40.9	61.7	45.4	49.0	63.5	58.3	48.4	63.5	57.1	47.9	66.7	55.9	47.1	66.7	54.5
Cascade R-CNN	ResNet-101	39.8	55.5	45.7	39.4	55.8	44.8	51.3	63.5	60.0	50.7	63.4	59.5	46.3	61.3	54.0	45.9	61.2	53.3
Mask R-CNN	ResNet-101	34.9	53.5	37.6	35.0	53.3	38.3	47.1	61.1	55.4	46.4	61.0	55.2	43.9	60.8	50.2	43.2	60.7	50.3
Cascade Mask R-CNN	ResNet-101	41.8	57.3	47.4	41.4	57.1	46.6	46.4	58.6	54.0	46.0	58.6	53.9	59.4	74.7	69.0	58.5	74.9	68.3 70.0
HTC	ResNet-101	49.2	66.0	55.2	48.8	65.9	54.3	51.9	64.7	60.3	50.7	64.8	59.4	60.4	77.3	71.7	59.6	77.3	70.9
SCNet SOLO	ResNet-101	36.0	51.4 51.1	40.9 33.9	35.5	51.3 53.5	39.4 33.9	49.0	62.2 53.0	57.2 39.9	48.3	62.2 54.6	56.9 42.1	49.1 34.4	66.3 59.9	57.3 32.8	48.2 36.1	66.2 59.6	56.2 34.5
SOLO SOLOv2	ResNet-101 ResNet-101	33.5	51.1 54.0	35.9 35.9	33.0	55.5 54.5	33.9 36.0	35.6 33.8	55.0 51.8	39.9 36.5	35.8	54.0 53.7	42.1 39.5	45.3	59.9 71.1	52.8 49.4	47.9	59.0 72.7	54.5 54.0
Deformable DETR	ResNet-101 ResNet-101	32.3	34.0 43.7	35.9 35.8	32.0	54.5 43.7	35.3	40.2	51.8 55.1	30.3 45.8	39.9	55.0	39.3 45.0	43.3 51.1	71.1	49.4 58.6	50.8	72.7	54.0 57.7
QueryInst	ResNet-101 ResNet-101	32.0	43.7 46.2	36.3	31.6	45.8	35.5	37.4	33.1 49.7	43.2	37.6	50.4	43.5	44.8	60.6	53.8	44.5	61.1	53.2
ISTR	ResNet-101 ResNet-101	61.8	80.3	50.5 69.7	61.1	80.2	70.2	50.5	63.4	43.2 58.4	50.5	50.4 63.5	43.3 58.4	66.3	83.0	55.8 75.6	65.7	83.0	55.2 75.0
Ours	ResNet-101 ResNet-101	59.7	78.7	68.2	59 .1	78.5	67.0	50.5	63.4 63.0	58.4 57.7	49.8	62.9	58.4 57.3	68.2	85.0 85.0	73.0 77.2	68.2	85.0 85.0	73.0 77.2
Ours	Keshet-101	39.7	/0./			78.3	07.0	50.2	03.0				57.5	00.2	03.0			05.0	11.4
			Object	110	ote Instance						aper_ch Instance			newspa			Instance		
Method	Backbone		Detection		Segmentation		Object Detection			Se	egmentati		Object Detection			Segmentation			
		mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75
GFL	ResNet-101	11.1	19.1	11.7	11.0	19.1	12.1	22.1	35.9	24.7	21.8	35.9	23.9	20.5	30.1	22.8	20.3	30.0	22.7
FCOS	ResNet-101	19.1	36.7	18.7	18.9	36.5	17.8	22.7	41.7	21.1	22.5	41.6	21.7	17.8	32.6	17.4	17.5	32.4	16.8
FoveaBox	ResNet-101	19.8	36.2	21.5	19.5	36.3	20.3	21.5	37.6	22.3	21.3	37.5	22.1	35.5	56.4	39.6	34.9	56.3	37.7
Faster R-CNN	ResNet-101	29.3	46.1	33.9	28.9	46.1	32.9	32.2	50.6	33.9	32.3	50.8	33.9	34.3	50.7	39.4	34.0	50.7	39.3
Cascade R-CNN	ResNet-101	22.5	34.9	27.3	22.3	34.9	27.3	27.7	42.6	29.8	27.7	42.7	30.0	26.3	36.5	29.6	26.0	36.3	29.3
Mask R-CNN	ResNet-101	15.1	27.6	15.3	15.2	27.8	14.6	21.2	36.9	21.2	20.5	36.2	19.9	19.9	31.1	21.9	19.7	31.0	21.8
Cascade Mask R-CNN	ResNet-101	24.3	36.7	28.9	24.0	36.7	28.0	43.2	60.8	47.1	42.9	60.7	47.1	23.4	32.8	26.9	23.1	32.7	26.6
HTC	ResNet-101	36.7	53.4	43.4	36.7	53.7	42.3	36.3	53.3	38.8	5.6	53.1	37.9	43.7	57.3	48.4	43.4	57.1	48.1
SCNet	ResNet-101	27.9	41.9	33.8	27.9	41.6	33.0	20.0	33.0	20.7	19.9	32.8	20.7	19.3	27.2	22.3	19.2	27.2	21.9
SOLO	ResNet-101	22.2	38.0	22.8	22.1	39.3	23.8	30.5	48.0	33.1	30.9	48.5	34.2	14.5	32.7	11.6	14.9	31.8	14.1
SOLOv2	ResNet-101	26.9	44.1	28.5	29.0	44.7	32.7	24.5	40.2	26.1	26.2	42.5	28.0	30.7	50.1	31.5	32.7	51.8	34.9
Deformable DETR	ResNet-101	24.2	33.5	28.5	23.9	33.5	28.3	29.7	43.8	32.4	29.6	43.7	32.3	34.2	49.7	38.1	34.1	49.3	38.4
QueryInst	ResNet-101	23.3	35.5	27.1	23.3	35.5	26.5	28.9	43.6	31.5	29.3	44.7	31.8	36.5	48.2	41.4	38.4	51.2	43.4
ISTR	ResNet-101	48.6	63.9	57.3	48.5	63.9	56.7	52.7	68.3	58.9	52.3	68.4	58.0	61.0	73.9	68.8	60.7	73.9	68.1
Ours	ResNet-101	44.1	60.5	50.7	43.6	60.3	49.9	59.4	78.1	65.9	59.0	78.1	65.3	64.0	78.4	73.3	63.6	78.2	72.6
			01	test j	paper	T			01	text	book	T			01	bo	ok	T .	
Method	Backbone	Object Detection		Instance Segmentation		Object Detection			Instance Segmentation			Object Detection			Instance Segmentation				
		mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	AP75	mAP	AP50	$\frac{1011}{\text{AP75}}$
GFL	ResNet-101	44.4	65.4	52.1	43.4	65.1	49.6	38.7	57.1	44.9	37.1	57.0	42.5	8.0	15.8	6.8	6.8	15.5	4.7
FCOS	ResNet-101 ResNet-101	37.9	63.4 59.7	43.0	36.6	59.6	49.0 39.4	33.2	57.1 52.7	44.9 38.0	31.6	52.5	42.5 34.8	10.3	13.8 23.5	0.8 6.7	7.9	20.7	4.7
FoveaBox	ResNet-101	42.8	66.8	43.0 48.9	41.4	66.8	46.3	34.5	54.2	38.0 39.7	33.2	52.5 54.1	34.8 37.3	21.6	23.5 37.6	22.3	21.3	20.7 37.5	4.2
Faster R-CNN	ResNet-101 ResNet-101	52.0	74.1	40.9 60.6	51.1	74.2	40.3 59.8	43.6	62.7	59.7 52.7	42.4	62.6	57.5	14.5	27.2	13.5	12.0	26.3	9.2
Cascade R-CNN	ResNet-101	54.3	73.4	63.0	53.8	73.5	62.7	47.1	64.7	55.4	45.8	64.6	54.2	9.2	16.3	8.9	7.7	20.3 16.2	6.0
Mask R-CNN	ResNet-101	49.1	70.2	56.9	48.1	70.0	55.7	40.3	58.1	48.3	39.8	58.0	47.5	7.1	14.9	5.7	7.6	15.0	5.9
Cascade Mask R-CNN	ResNet-101	52.6	70.2	61.1	52.3	70.0	60.4	45.7	62.8	54.1	44.4	62.7	52.3	10.8	18.8	11.5	8.8	18.4	7.1
НТС	ResNet-101	57.9	77.7	66.9	57.2	77.6	65.9	51.2	69.6	60.3	50.5	69.6	52.5 59.1	19.6	29.6	24.1	18.8	29.5	22.4
SCNet	ResNet-101	54.8	75.5	64.2	53.9	75.3	62.6	44.6	62.7	51.8	43.6	62.5	50.3	6.6	12.2	6.3	6.7	12.2	6.3
SOLO	ResNet-101	36.2	59.1	38.5	36.2	61.1	37.9	31.8	49.7	35.1	31.1	50.3	34.8	5.8	13.9	4.0	3.2	10.0	1.1
SOLOv2	ResNet-101	33.0	55.7	33.3	34.5	57.4	36.5	33.7	54.6	36.6	35.0	55.3	38.2	17.3	29.8	17.2	15.6	29.2	16.4
Deformable DETR	ResNet-101	53.7	75.2	60.8	53.5	75.3	60.2	46.6	64.6	53.8	45.0	64.4	51.5	14.0	21.7	15.5	10.1	20.0	9.0
QueryInst	ResNet-101	44.0	60.9	50.4	43.4	61.2	49.9	35.7	50.0	41.3	35.5	50.1	41.1	10.7	17.1	11.8	10.5	17.2	11.6
ISTR	ResNet-101	60.4	80.9	68.5	60.1	80.9	67.9	50.1	68.2	58.7	49.5	68.1	57.3	29.0	39.9	35.4	28.4	39.8	34.4
Ours	ResNet-101	60.7	81.9	68.0	60.3	82.2	66.9	51.7	70.1	60.3	51.2	70.1	59.5	28.3	41.0	33.0	27.9	40.7	33.0
	•	•			•			•			•			•			•		

 Table 5. Performance comparisons on PubLayNet dataset.

 Table 4. Performance comparisons on DocLayNet dataset.

We presents a modern dataset and method for document layout analysis. 1. We have constructed and publicized the M⁶Doc dataset, which is a modern document dataset that supports multiple formats, types, layouts, languages, and annotation categories. 2.M⁶Doc is the first layout analysis dataset that contains both real-world (photographed and scanned) and born-digital document images. Additionally, it is the first dataset that includes Chinese documents. 3.M⁶Doc contains the most fine-grained logical layout analysis categories. It can serve as a benchmark for several related tasks, such as logical layout analysis, formula recognition, and table analysis.

Conclusion

4. We propose the TransDLANet, a Transformer-based method for DLA.

