TUE-PM-320

Two-way Multi-Label Loss

<u>Takumi Kobayashi</u>

National Institute of Advanced Industrial Science and Technology, Japan -

University of Tsukuba, Japan

E-mail: takumi.kobayashi@aist.go.jp

Image Classification

- Real images frequently contain multiple targets.
- It poses **multi-label classification**, in comparison to a standard single-label one, e.g., ImageNet.

Task: Multi-label classification

Single-label classification

Gap between Softmax and Multi-Label

- Although softmax loss works quite well in single-label scenario, it is rarely applied to multi-label learning.
 - There is a gap between the softmax loss and multi-label classification.

Contributions

- We propose a <u>softmax-based multi-label loss function</u> and a <u>novel two-way approach</u> to apply it for learning models.
- The method inherits favorable properties of softmax loss and enhance discriminative power of feature representation from two aspects.

Revisit: Softmax Loss

• Measure discrepancy between single ground-truth logit and others.

$$\ell_{\rm sm} = -\boldsymbol{p}_y \log \boldsymbol{q}(\boldsymbol{x}) = -\log \frac{e^{x_y}}{\sum_c e^{x_c}} = \mathsf{softplus} \left[\log \left\{ \sum_{c \neq y} e^{\boldsymbol{x_c}} \right\} - \boldsymbol{x_y} \right]$$

• Find hard negatives.

The other logits are well aggregated by **log-sum-exp**.

Softmax Loss in Multi-Label Setting

- A straight-forward extension to multiple labels.
 - Average of single softmax losses over given labels.

$$\ell_{\rm sm} = -\boldsymbol{p}\log\boldsymbol{q}(\boldsymbol{x}) = \frac{1}{m}\sum_{p=1}^m -\log\frac{e^{x_{y_p}}}{\sum_c e^{x_c}}$$

• Positive logits *unfavorably* conflict with each other.

Multi-label Loss Function

$$\ell = \mathsf{softplus} \left[T_{\mathcal{N}} \log \sum_{n \in \mathcal{N}} e^{\frac{x_n}{T_{\mathcal{N}}}} + T_{\mathcal{P}} \log \sum_{p \in \mathcal{P}} e^{-\frac{x_p}{T_{\mathcal{P}}}} \right]$$

Multi-label Loss Function

Multi-label loss function

Multi-label loss function

Multi-label loss function

$$\ell = \mathsf{softplus}\left[T_{\mathcal{N}} \log \sum_{n \in \mathcal{N}} e^{\frac{x_n}{T_{\mathcal{N}}}} + T_{\mathcal{P}} \log \sum_{p \in \mathcal{P}} e^{-\frac{x_p}{T_{\mathcal{P}}}}\right]$$

Experimental Results

• Ablation Study: Ways

Experimental Results

• Ablation Study: **Ways**

		(a) Ours (b) Softm			ax		
	way	both	class	sample	both	class	sample
	mAP@class mAP@sample	74.11 86.66	73.06 82.75	67.18 <u>86.07</u>	69.19 84.33	<u>68.13</u> 69.15	58.00 <u>83.60</u>
MS-COCO dataset							
 ✓ zebra ✓ giraffe ✓ car ✓ truck 	discrimina M sample	tes sam		Y Classes	dis	criminat	es classes
							JUNE 18-22, 2023

Experimental Results

Performance comparison							various models				
		mAP@class					mAP@sample				
	CNN	ResNet50	ResNeXt50	DenseNet169	RegNetY32gf	ResNet50	ResNeXt50	DenseNet169	RegNetY32gf		
MSCOCO [19]	Softmax	58.00	59.53	58.21	64.14	83.60	84.46	83.13	86.92		
	BCE	67.71	69.68	64.04	73.38	79.65	80.62	76.14	83.21		
	Focal [18]	69.42	71.33	67.18	74.99	84.38	85.22	83.33	87.51		
	ASL [2]	70.92	73.04	69.25	76.70	85.05	86.06	84.40	88.29		
	Ours	74.11	75.44	73.51	79.57	86.66	87.11	86.62	89.54		
VISPR [23]	Softmax	36.61	36.97	28.64	36.79	85.23	85.43	83.75	85.90		
	BCE	44.22	45.34	39.73	46.11	72.39	73.14	69.31	73.75		
	Focal [18]	46.89	47.76	40.78	48.75	84.35	84.26	82.91	85.29		
	ASL [2]	48.53	49.53	42.61	51.03	84.81	84.99	83.99	86.15		
	Ours	51.89	52.79	48.57	53.75	85.64	85.40	85.88	86.67		
VAW [25]	Softmax	52.59	53.33	47.30	55.02	77.68	78.09	75.97	78.99		
	BCE	51.21	51.31	44.53	52.25	72.43	72.29	66.50	72.43		
	Focal [18]	54.38	54.50	48.94	56.77	77.66	77.70	75.81	78.71		
	ASL [2]	55.39	55.72	48.17	57.88	78.05	78.32	75.91	79.03		
	Ours	56.42	57.00	54.28	59.33	78.81	78.95	78.36	80.07		
<i>WIDER</i> [17]	Softmax	63.91	65.14	63.61	66.47	83.09	83.74	83.02	84.65		
	BCE	70.16	71.40	70.16	73.26	77.62	78.56	77.36	79.94		
	Focal [18]	65.88	67.29	64.49	68.72	82.27	82.92	81.89	83.66		
	ASL [2]	67.99	69.71	67.34	71.11	83.44	84.12	83.38	85.00		
-	Ours	72.28	72.77	73.03	74.92	85.43	85.43	85.87	86.97		

various datasets

Thank you !

