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Image Classification
• Real images frequently contain multiple targets.
• It poses multi-label classification, in comparison to a standard
single-label one, e.g., ImageNet.
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Gap between Softmax and Multi-Label
• Although softmax loss works quite well in single-label scenario, 
it is rarely applied to multi-label learning.
• There is a gap between the softmax loss and multi-label classification.
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Contributions
• We propose a softmax-based multi-label loss function and
a novel two-way approach to apply it for learning models.

• The method inherits favorable properties of softmax loss and enhance
discriminative power of feature representation from two aspects.
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• Measure discrepancy between single ground-truth logit and
others.

• Find hard negatives.

Revisit: Softmax Loss
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ther boosting performance. The proposed loss function is
regarded as a generalization of the softmax loss, being re-
duced into the softmax loss in case of a single-label task.
Thus, the general loss formulation enables us to measure
losses in two ways for computing multi-label classification
loss not only at each sample but also for each class to dis-
criminate samples on that class as the BCE focuses on. In
summary, our contributions are three-fold as follows.

• We formulate a new loss function to deal with multiple
labels per sample while enhancing classification margin.

• By using the loss function, we propose a two-way ap-
proach for measuring multi-label loss.

• The loss is thoroughly analyzed from various aspects in
the experiments and exhibits competitive performance,
compared to the other multi-label losses. It also provides
transferrable features on single-label ImageNet training.

1.1. Related works

Multi-label classification: In recent years, the multi-label
task is addressed in a deep learning framework by improv-
ing models from an architectural viewpoint. Relationships
among multiple labels assigned to an image are exploited
such as by recurrent neural network [30] and graph neural
networks [8] which also leverage external word-related in-
formation [4,32] to extract semantic characteristics of class
categories. Regional features are also utilized [39] while
transformer-based spatial attention mechanism is incorpo-
rated to detect label-related region [33]. In this paper, we fo-
cus on a loss function which is an orthogonal direction to the
architectural approaches; it would compensate the above-
mentioned methods which simply employ a BCE loss.
BCE loss: In the multi-label framework, a binary cross-
entropy (BCE) loss plays a key role through decompos-
ing multi-class classification into multiple class-wise binary
tasks. For establishing multi-label losses, research effort is
mainly devoted to improving the BCE especially in terms
of the imbalance issue mentioned above. Frequency-based
weighting [25] is widely applied as a naive extension of
BCE, and in recent years, sophisticated adaptive weighting
schemes are proposed [2, 18]. There are also works to im-
prove BCE so as to cope with particular situations such as
class imbalance [35] and partial labeling [1]. In contrast,
we derive the proposed method in a framework of a softmax
loss, apart from the BCE formulation. Thus, our method by-
passes the imbalance issue tackled by [2, 18] while enhanc-
ing discriminativity in terms of both classes and samples.
Metric learning: From a viewpoint of formulation, our
method is related to the loss functions applied to optimize
similarity in the literature of metric learning which is differ-
ent from the multi-label classification. By regarding a clas-
sifier vector as a proxy of the class, one could find resem-
blance between the similarity learning and the multi-label

learning both of which cope with multiple positive and neg-
ative pairs. The point is that we derive our multi-label loss
through theoretically analyzing a single-label softmax loss,
while the similarity losses [27, 31] are formulated based on
rather heuristic pair-wise comparison among positive and
negative similarities; we discuss the difference in Sec. 3.

2. Method
We first analyze a softmax cross-entropy from a view-

point of a single-label loss function and then derive a new
loss to effectively cope with multiple labels.

2.1. Softmax cross-entropy loss for single label
In single-label supervised learning, a softmax cross-

entropy provides an effective loss function. Suppose an im-
age sample I equipped with a class label y 2 {1, · · · , C}.
The image is processed by a (neural network) model f✓ pa-
rameterized by ✓ to produce a logit vector x = f✓(I) 2
RC . The softmax loss is formulated by means of cross-
entropy between one-hot label y and softmax of logits x as
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where xc indicates the c-th element of a logit vector x. Fol-
lowing [15], we reformulate it toward a loss-like form akin
to hinge loss [6, 29];
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where softplus(·) = log[1 + exp(·)] is a softplus function,
smooth approximation of a hinge function. In this form,
the log-sum-exp resembles a maximum operator to provide
a hard logit over negative classes as log

P
c 6=y exp(xc) ⇡

maxc 6=y xc [15]. This reformulation (3) reveals that a soft-
max loss measures difference between the positive xy and
the hard negative log

P
c 6=y exp(xc) via a softplus function.

2.2. Multi-label loss
We then consider a multi-label setting where a logit vec-

tor x is associated with multiple labels P , a set of posi-
tive labels assigned to x; the number of positive labels is
1  |P| < C and we denote a set of negative labels by N
such that |P[N| = C and P\N = ?. For correctly iden-
tifying the positive classes P on multi-label classification,
we encourage the logits x to have the relationship of

xp > xn, 8p 2 P, 8n 2 N , min
p2P

xp > max
n2N

xn, (4)

The other logits are well 
aggregated by log-sum-exp.
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• A straight-forward extension to multiple labels.
• Average of single softmax losses over given labels.

• Positive logits unfavorably conflict with each other.

Softmax Loss in Multi-Label Setting
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Multi-label Loss Function
• We derive a novel multi-label loss in a softmax formulation.

Sampling random rotation matrix.

where xp and xn indicate logits of positive and negative
classes, respectively; we refer to them as positive and nega-

tive logits. The analysis in Sec. 2.1 inspires us to formulate
a multi-label loss by measuring the difference between the
hard positive and hard negative logits in (4) via softplus.

Since the softmax loss (3) leverages log-sum-exp to rep-
resent negative logits, our particular interest is to effectively
describe the hard positive of minp2P xp. We follow the ap-
proach to replace the min operator by log-sum-exp. The
minimum of positive logits can be written by using max
operator so that log-sum-exp is applied as follows.

min
p2P

xp = �max
p2P

(�xp) ⇡ � log
X

p2P
e�xp . (5)

We embed this hard positive into a softplus loss function
(3) by replacing the single positive logit xy to construct the
multi-label loss of
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2.3. Classification margin
To enhance the discriminative relationship (4), a margin

for multi-label classification is naturally defined as

� , min
p2P

xp �max
n2N

xn. (8)

The multi-label loss (6) implicitly enlarges the margin due
to log-sum-exp which has the following property.

Proposition 1. The difference between hard positive and

negative in (6) is larger than the negative margin, ��:
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Proof. A log-sum-exp function is rewritten as
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where n⇤= argmaxn2N xn and
P

n 6=n⇤exn�xn⇤ >0. Sim-
ilarly, we have

log
X

p2P
e�xp > max
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(�xp) = �min

p2P
xp. (11)

Thus, the margin in the multi-label loss (6) is underesti-
mated toward larger margin through minimizing the loss as
in large-margin methods [6, 29].

Based on the margin-based analysis, we further enhance
large-margin effect in the multi-label loss for improving dis-
crimination. The implicit margin in (6) resorts to the gap

Figure 1. Our multi-label loss function enlarges a margin between
positive and negative logits by a temperature parameter T .

shown in (10), that is, log
P
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xc�xc⇤ ). We thus introduce temperature T into

log-sum-exp for enlarging the gap as follows.

Proposition 2. A temperature parameter T > 0 reformu-
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Proof. The tempered log-sum-exp is written by
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where the second term monotonically increases w.r.t. T > 0
as c⇤ = argmaxc xc and xc � xc⇤  0, 8c 6= c⇤.

Thereby, we propose the following multi-label loss.

` = softplus
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�
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where two temperatures TP and TN are applied to positive
and negative logits, respectively. While such a temperature
is incorporated into softmax in the field of knowledge dis-
tillation [13], in this study, the temperature controls a mar-
gin in the multi-label loss as shown in Fig. 1. Particularly,
a margin is further underestimated by T > 1 for induc-
ing larger-margin classification. As to negative logits, how-
ever, the number of negatives is generally larger than that
of positives, |N | � |P|, and thereby sufficiently large gap
of log(1 +

P
n 6=n⇤ exn�xn⇤ ) can be given in (10) even for

TN = 1, inducing large margin on the side of negatives.
Therefore, the temperature parameters can be reduced into
only a positive one TP by TN = 1 in (14) for consider-
ing the larger margin only on positive logits via TP � 1 as
shown in Fig. 1; it is empirically discussed in Sec. 4.2. It
should be noted that the proposed loss (14) enhances clas-
sification margin without imposing regularization on log-
its [15] nor manipulating logits [20].
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where two temperatures TP and TN are applied to positive
and negative logits, respectively. While such a temperature
is incorporated into softmax in the field of knowledge dis-
tillation [13], in this study, the temperature controls a mar-
gin in the multi-label loss as shown in Fig. 1. Particularly,
a margin is further underestimated by T > 1 for induc-
ing larger-margin classification. As to negative logits, how-
ever, the number of negatives is generally larger than that
of positives, |N | � |P|, and thereby sufficiently large gap
of log(1 +
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Therefore, the temperature parameters can be reduced into
only a positive one TP by TN = 1 in (14) for consider-
ing the larger margin only on positive logits via TP � 1 as
shown in Fig. 1; it is empirically discussed in Sec. 4.2. It
should be noted that the proposed loss (14) enhances clas-
sification margin without imposing regularization on log-
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where two temperatures TP and TN are applied to positive
and negative logits, respectively. While such a temperature
is incorporated into softmax in the field of knowledge dis-
tillation [13], in this study, the temperature controls a mar-
gin in the multi-label loss as shown in Fig. 1. Particularly,
a margin is further underestimated by T > 1 for induc-
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2.3. Classification margin
To enhance the discriminative relationship (4), a margin

for multi-label classification is naturally defined as
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The multi-label loss (6) implicitly enlarges the margin due
to log-sum-exp which has the following property.
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Thus, the margin in the multi-label loss (6) is underesti-
mated toward larger margin through minimizing the loss as
in large-margin methods [6, 29].

Based on the margin-based analysis, we further enhance
large-margin effect in the multi-label loss for improving dis-
crimination. The implicit margin in (6) resorts to the gap

Figure 1. Our multi-label loss function enlarges a margin between
positive and negative logits by a temperature parameter T .

shown in (10), that is, log
P

c e
xc � maxc xc = log(1 +P

c 6=c⇤ e
xc�xc⇤ ). We thus introduce temperature T into

log-sum-exp for enlarging the gap as follows.

Proposition 2. A temperature parameter T > 0 reformu-

lates log-sum-exp as T log
P

c e
xc
T which has

max
c

xc < T log
X

c

e
xc
T 7 log

X

c

exc for T 7 1. (12)

Proof. The tempered log-sum-exp is written by

T log
X

c

e
xc
T = xc⇤ + T log

⇣
1 +

X

c 6=c⇤

e
xc�xc⇤

T

⌘
, (13)

where the second term monotonically increases w.r.t. T > 0
as c⇤ = argmaxc xc and xc � xc⇤  0, 8c 6= c⇤.

Thereby, we propose the following multi-label loss.
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where two temperatures TP and TN are applied to positive
and negative logits, respectively. While such a temperature
is incorporated into softmax in the field of knowledge dis-
tillation [13], in this study, the temperature controls a mar-
gin in the multi-label loss as shown in Fig. 1. Particularly,
a margin is further underestimated by T > 1 for induc-
ing larger-margin classification. As to negative logits, how-
ever, the number of negatives is generally larger than that
of positives, |N | � |P|, and thereby sufficiently large gap
of log(1 +

P
n 6=n⇤ exn�xn⇤ ) can be given in (10) even for

TN = 1, inducing large margin on the side of negatives.
Therefore, the temperature parameters can be reduced into
only a positive one TP by TN = 1 in (14) for consider-
ing the larger margin only on positive logits via TP � 1 as
shown in Fig. 1; it is empirically discussed in Sec. 4.2. It
should be noted that the proposed loss (14) enhances clas-
sification margin without imposing regularization on log-
its [15] nor manipulating logits [20].
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Table 1. Performance results with various temperatures. The per-
formances of vanilla setting, TP = 1 and TN = 1, are underlined.

mAP@class mAP@sample
TN 0.5 1 2 4 0.5 1 2 4

! 0 71.03 71.58 71.88 71.86 85.01 85.37 85.55 85.47
0.5 72.20 72.30 72.17 71.95 85.72 85.81 85.68 85.51

TP 1 72.85 72.93 72.56 72.20 86.07 86.14 85.94 85.66
2 73.42 73.66 73.23 72.53 86.27 86.48 86.34 85.85
4 73.56 74.11 73.90 73.24 86.26 86.66 86.66 86.23

Table 2. Performance results by applying logit bias ✏ [27].

✏ 0.5 1 2 4 8

mAP@class 73.08 73.16 73.28 73.44 73.18
mAP@sample 86.19 86.22 86.25 86.21 86.02

4.1. Training procedure

We finetune ImageNet-pretrained CNN models on a tar-
get dataset with a multi-label loss. SGD with momentum of
0.9 and weight decay of 10�4 is applied to a batch of 512
samples over 40 training epochs with a cosine-scheduled
learning rate starting from 0.01 for the FC classifier and
0.001 for the other layers. We apply distributed training
across 4 GPUs of NVIDIA V100, which produces 4 buckets
of M = 512/4 = 128 samples to construct a logit matrix
(Fig. 2); the bucket-level losses are averaged in the batch.

4.2. Ablation study

We first analyze the method from various aspects
through the following ablation studies, and then in Sec. 4.3
compare the method to the other loss functions on various
multi-label tasks. The ablation study is conducted on MS-
COCO [19] using ResNet-50 [12].
Temperature T : In the loss (14), temperature parameters
TP and TN are applied to enhance classification margin on
positive and negative logits, respectively. Tab. 1 shows per-
formance results across various temperatures. As discussed
in Sec. 2.3, performance is improved by increasing the pos-
itive temperature TP to enlarge margin on the positive side.
On the other hand, the negative temperature provides fa-
vorable performance by TN = 1, as the number of nega-
tive logits is larger than that of positives, in this case ⇥30
(Tab. 6), to provide a sufficient margin even by TN = 1.
Thus, we apply TN = 1 and TP = T = 4 in (15, 16).

We also evaluate the naive hard positive logit of
minp2P xp by simply setting TP ! 0. It significantly
degrades performance as shown in the top row of Tab. 1.
Such an extreme operator produces sparse backward update
as well as provides no margin in the loss. This compari-
son clarifies that log-sum-exp function effectively produces
hard positive logit with a proper margin via T .

Table 3. Performance regarding ways to compute multi-label loss.

(a) Ours (b) Softmax
way both class sample both class sample

mAP@class 74.11 73.06 67.18 69.19 68.13 58.00
mAP@sample 86.66 82.75 86.07 84.33 69.15 83.60

Table 4. Performance results by other related loss functions.

(a) Multi-sim loss (20) (b) Joint-way (22)
TP 1 2 4 1 2 4

mAP@class 70.36 70.94 71.27 70.19 71.71 71.82
mAP@sample 85.42 85.75 85.95 84.82 85.57 85.64

Table 5. Performance about bucket size M in a batch size of 512.

M 16 32 64 128 256 512

mAP@class 70.76 72.84 73.68 74.11 74.15 74.01
mAP@sample 85.79 86.33 86.60 86.66 86.58 86.47

Logit bias: In [27], the margin is also discussed through
adding bias to logits, which is eventually described by a
single bias parameter ✏ to shift the logit difference in a soft-
plus function as described in Sec. 3.1. Tab. 2 shows per-
formance results of various bias ✏. The logit bias slightly
improves performance by ✏ = 4, though being inferior to
our temperature approach of TP = 4 (Tab. 1). As shown
in (13), the temperature T adaptively controls margin based
on the logit distribution while a bias ✏ constantly affects log-
its in the softplus function, less contributing to large-margin
classification during end-to-end learning.

Ways: We then analyze the ways to apply the multi-label
loss function (14) to a logit matrix. The proposed two-way
approach (17) is compared to class-wise (16) and sample-
wise (15) losses as shown in Tab. 3a. Those two approaches
improve class-wise and sample-wise performances, respec-
tively. By combining those two ways into the loss (17),
performance is significantly improved to outperform the re-
spective approaches. The feature representation is effec-
tively learned from these two perspectives to discriminate
both samples and classes.

Loss function: The proposed loss is compared to the re-
lated loss functions of softmax loss (18), multi-similarity
loss (20) [31] and joint-way loss (22), which are mentioned
in Sec. 3. As in our loss, the softmax loss is applicable
in two ways to improve performance as shown in Tab. 3b,
though being inferior to ours (Tab. 3a). Particularly, one-
way softmax loss significantly degrades performance on the
counter-metric; e.g., performance of class-way loss dete-
riorates at the metric of mAP@sample. This result indi-
cates that the implicit constraint of uniform positive logits
(Sec. 3.1) in the softmax loss would make the feature repre-
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learning rate starting from 0.01 for the FC classifier and
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across 4 GPUs of NVIDIA V100, which produces 4 buckets
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(Fig. 2); the bucket-level losses are averaged in the batch.

4.2. Ablation study
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through the following ablation studies, and then in Sec. 4.3
compare the method to the other loss functions on various
multi-label tasks. The ablation study is conducted on MS-
COCO [19] using ResNet-50 [12].
Temperature T : In the loss (14), temperature parameters
TP and TN are applied to enhance classification margin on
positive and negative logits, respectively. Tab. 1 shows per-
formance results across various temperatures. As discussed
in Sec. 2.3, performance is improved by increasing the pos-
itive temperature TP to enlarge margin on the positive side.
On the other hand, the negative temperature provides fa-
vorable performance by TN = 1, as the number of nega-
tive logits is larger than that of positives, in this case ⇥30
(Tab. 6), to provide a sufficient margin even by TN = 1.
Thus, we apply TN = 1 and TP = T = 4 in (15, 16).
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wise (15) losses as shown in Tab. 3a. Those two approaches
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tively. By combining those two ways into the loss (17),
performance is significantly improved to outperform the re-
spective approaches. The feature representation is effec-
tively learned from these two perspectives to discriminate
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Loss function: The proposed loss is compared to the re-
lated loss functions of softmax loss (18), multi-similarity
loss (20) [31] and joint-way loss (22), which are mentioned
in Sec. 3. As in our loss, the softmax loss is applicable
in two ways to improve performance as shown in Tab. 3b,
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Table 7. Classification accuracies (%) on diverse datasets with various CNNs.

mAP@class mAP@sample
CNN ResNet50 ResNeXt50 DenseNet169 RegNetY32gf ResNet50 ResNeXt50 DenseNet169 RegNetY32gf

MSCOCO [19] Softmax 58.00 59.53 58.21 64.14 83.60 84.46 83.13 86.92
BCE 67.71 69.68 64.04 73.38 79.65 80.62 76.14 83.21

Focal [18] 69.42 71.33 67.18 74.99 84.38 85.22 83.33 87.51
ASL [2] 70.92 73.04 69.25 76.70 85.05 86.06 84.40 88.29

Ours 74.11 75.44 73.51 79.57 86.66 87.11 86.62 89.54

VISPR [23] Softmax 36.61 36.97 28.64 36.79 85.23 85.43 83.75 85.90
BCE 44.22 45.34 39.73 46.11 72.39 73.14 69.31 73.75

Focal [18] 46.89 47.76 40.78 48.75 84.35 84.26 82.91 85.29
ASL [2] 48.53 49.53 42.61 51.03 84.81 84.99 83.99 86.15

Ours 51.89 52.79 48.57 53.75 85.64 85.40 85.88 86.67

VAW [25] Softmax 52.59 53.33 47.30 55.02 77.68 78.09 75.97 78.99
BCE 51.21 51.31 44.53 52.25 72.43 72.29 66.50 72.43

Focal [18] 54.38 54.50 48.94 56.77 77.66 77.70 75.81 78.71
ASL [2] 55.39 55.72 48.17 57.88 78.05 78.32 75.91 79.03

Ours 56.42 57.00 54.28 59.33 78.81 78.95 78.36 80.07

WIDER [17] Softmax 63.91 65.14 63.61 66.47 83.09 83.74 83.02 84.65
BCE 70.16 71.40 70.16 73.26 77.62 78.56 77.36 79.94

Focal [18] 65.88 67.29 64.49 68.72 82.27 82.92 81.89 83.66
ASL [2] 67.99 69.71 67.34 71.11 83.44 84.12 83.38 85.00

Ours 72.28 72.77 73.03 74.92 85.43 85.43 85.87 86.97

VOC2007 [9] Softmax 83.49 84.31 82.53 86.63 93.23 93.66 92.61 94.99
BCE 85.58 86.65 81.96 88.25 91.44 91.91 87.55 92.62

Focal [18] 85.59 86.27 78.33 87.87 93.04 93.24 89.83 94.56
ASL [2] 86.70 87.53 81.44 89.26 93.42 93.80 91.05 95.08

Ours 89.04 89.57 88.67 91.44 94.44 94.53 94.13 95.72

VOC2012 [9] Softmax 82.46 83.37 81.56 86.48 93.65 93.81 92.72 95.23
BCE 85.56 86.56 81.94 88.27 92.60 93.01 89.63 94.05

Focal [18] 85.59 86.04 79.41 87.99 93.56 93.74 90.65 95.17
ASL [2] 86.56 87.09 81.83 89.06 94.01 94.19 92.18 95.46

Ours 88.12 88.72 87.95 91.01 94.38 94.73 94.28 96.04

Table 8. Classification accuracies (%) on various datasets by transferring ImageNet-pretrained ResNet-50 features.

Dataset ImageNet Aircraft [21] Caltech101 [10] Car [16] CUB [34] DTD [5] Flower [22] Food101 [3] Pets [24] SUN [37]

ASL [2] 76.76 27.42 85.22 32.99 55.26 64.89 75.88 57.08 91.33 53.38
Softmax 76.32 39.18 88.17 45.13 63.15 70.85 85.75 65.44 92.12 58.85

Ours 76.29 44.01 88.36 46.50 65.96 72.71 87.72 66.83 92.18 59.49

of softmax and ours; it degrades performance especially on
Aircraft dataset3. As discussed in Sec. 3.1, ASL which is
a variant of BCE loss imposes the zero-basis constraint on
the logits in a sigmoid function. It might lead to over-fitting
toward the primary (ImageNet) task, hampering generaliza-
tion of the learnt features. On the other hand, the losses of
softmax and ours based on relative comparison among log-
its let features be flexibly learned to enhance generalization
performance. The proposed loss further enhances the dis-
criminative power of feature representation through com-
parison along two directions of classes and samples in the

3Aircraft dataset [21] poses fine-grained discrimination of aircraft ap-
pearances. Since the ImageNet pre-training task pays less attention to those
visual features, the performance comparison on that dataset might high-
light difference in general discriminative power of feature representations.

two-way formulation, which leads to better performance,
such as on Aircraft dataset, as shown in Tab. 8.

5. Conclusion

We have proposed a novel loss to cope with multiple la-
bels. The multi-label loss function is theoretically formu-
lated in a margin-aware form through analyzing the softmax
loss. Then, it is effectively applied in the two-way man-
ner to finally construct multi-label loss for improving both
class-wise and sample-wise performance. The experimen-
tal results show that the proposed loss is effective not only
for improving performance on multi-label classification but
also for providing transferrable features on single-label Im-
ageNet pre-training.
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