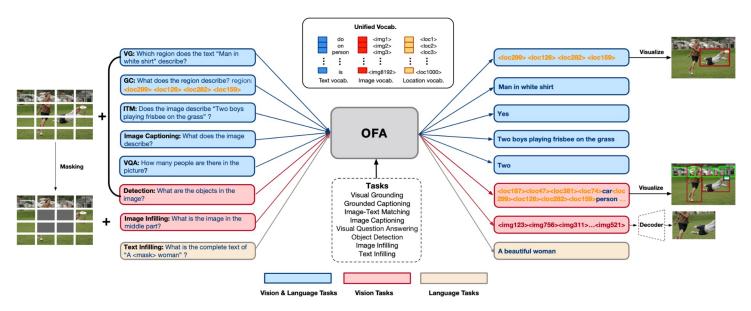
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model

Shengkun Tang¹, Yaqing Wang², Zhenglun Kong³, Tianchi Zhang⁴, Yao Li⁵, Caiwen Ding⁶, Yanzhi Wang³, Yi Liang², Dongkuan Xu¹

Paper Tag: WED-AM-243

- ☐ Introduction
- Motivation
- Methods
- ☐ Results
- □ Takeaways


- Introduction
- Motivation
- Methods
- Results
- Takeaways

Multi-Modal World

Modality: Text, Vision, Audio...

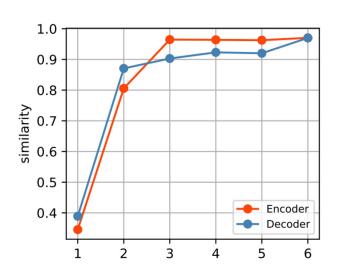
Unified Vision-Language Learning

Transformer-based Sequence-to-Sequence Framework

Wang P, Yang A, Men R, et al. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework[C]//International Conference on Machine Learning. PMLR, 2022: 23318-23340.

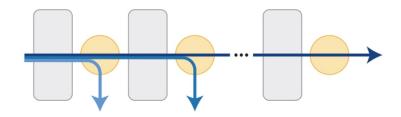
Drawback

Large computation resource requirement during inference


- Introduction
- Motivation
- Methods
- Results
- Takeaways

Motivation

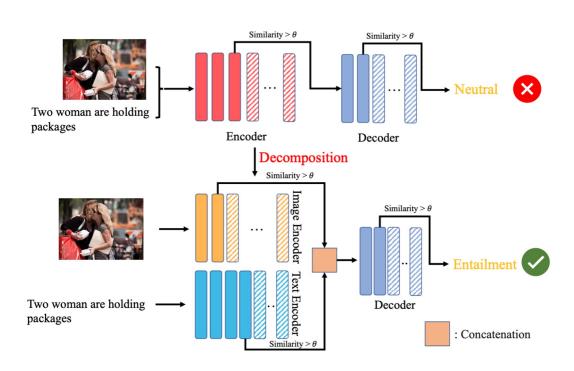
Saturation status [1]



Redundant layer removal

- Introduction
- Motivation
- Methods
- Results
- Takeaways

Early Exiting

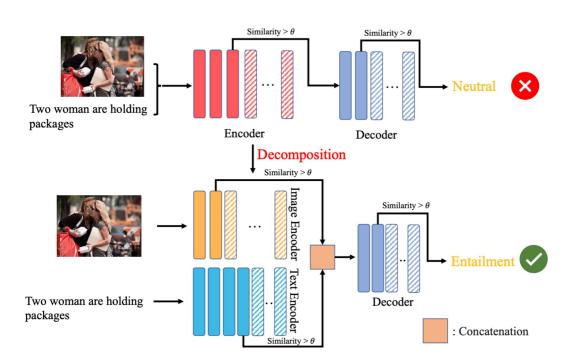


A classifier to make exiting decision based on confidence or entropy

Challenges

- 1. Dependencies in making decisions for exiting decisions in the encoder and decoder
- 2. Difficulty to apply confidence classifiers to skip the encoder layers

Methods



Modality Decomposition

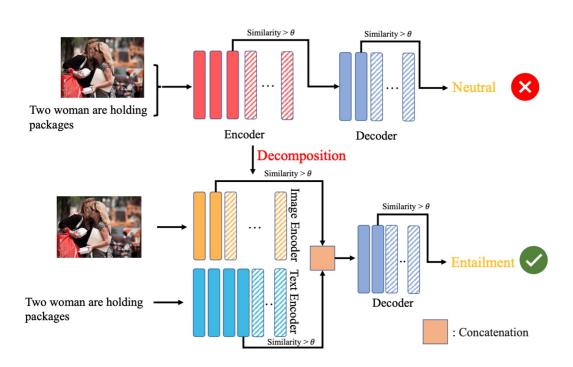
$$[\mathbf{I}_n;\mathbf{T}_n] = E_{1:n}([\mathbf{I}_0;\mathbf{T}_0]).$$

$$[\mathbf{I}_p;\mathbf{T}_q] = [E_{1:p}(\mathbf{I}_0);E_{1:q}(\mathbf{T}_0)].$$

 T_0 : Text input I_0 : Image input $E_{1:p}$: Encoder

Methods

Similarities for exiting decision


$$\begin{split} \operatorname{ImgSim}_i &= \operatorname{CosSim}(E_i(\mathbf{I}_i), E_{i-1}(\mathbf{I}_{i-1})), \\ \operatorname{TxtSim}_i &= \operatorname{CosSim}(E_i(\mathbf{T}_i), E_{i-1}(\mathbf{T}_{i-1})), \\ \operatorname{DecSim}_{i,s} &= \operatorname{CosSim}(D_i(Td_{i,s}), D_{i-1}(Td_{i-1,s})). \end{split}$$

Decay threshold for Decoder

$$\Theta(t) = \beta\theta + (1 - \beta)e^{-\tau t/N}$$

t: Timestep N: All steps D_i : Decoder

Methods

Task layer-wise loss

$$egin{aligned} \mathcal{L} &= rac{1}{N} \sum_{i}^{N} \mathcal{L}_{\textit{CE}}, \ \mathcal{L}_{\textit{CE}} &= - \sum_{i=1}^{|y|} \log P_{ heta}(y_i | y_{< i}, \mathbf{I}, \mathbf{T}), \end{aligned}$$

- Introduction
- Motivation
- Methods
- ☐ Results
- Takeaways

Results

Models	SNLI-VE			Image Captioning				
	Dev	Test	Time	BLEU-4	METEOR	CIDEr	SPICE	Time
OFA _{Base}	89.3	89.2	1	42.8	31.7	146.7	25.8	1
OFA _{Tiny}	85.3	85.2	-33%	38.1	29.2	128.7	23.1	-33%
DeeBERT	78.9	78.8	-15%	30.1	26.3	102.1	20.5	-15.5%
PABEE	85.3	85.2	-15.3%	31.4	26.8	105.8	21	-16.3%
DeeCap	_	-	-	38.7	29.1	129	22.5	-38%
Ours	88.7	88.5	-50%	41.6	30.6	137	24.4	-40.2%

Image Captioning on MS-COCO [1]

Visual Entailment on SNLI-VE [2]

[1] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014: 740-755.

[2] Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment: A novel task for fine-grained image understanding. arXiv:1901.06706, 2019.

Findings

Task	Image Layer	Text Layer	BLEU-4	METEOR	CIDERr	SPICE
Image Captioning	6.0	6.0	42.4	31.2	143.9	25.1
	3.1	2.0	32.8	27.4	112.1	20.8
	3.1	6.0	33.1	27.4	112.2	20.7
	6.0	2.0	42.0	31.2	143.6	25.1

Task	Image Layer	Text Layer	Dev	Test
	6	6	88.6	88.7
Visual Entailment	2.03	2.9	76.1	75.6
visuai Einainnein	6	2.9	79.1	79.5
	2.03	6	88.4	88.6

Computation requirement varies for different modalities on different tasks

- Introduction
- Motivation
- Methods
- Results
- □ Takeaways

Takeways

Unified vision language models require more efficiency

Early Exiting accelerates vision language models inference by:

- 1. Modality Decomposition
- 2. Similarity for exiting decision
- 3. Task layer-wide loss

Open issues:

- 1. Performance drops when efficiency > 60%
- 2. More modality

Thank you!

You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model

Shengkun Tang¹ (Shengkun Tang), Yaqing Wang², Zhenglun Kong³, Tianchi Zhang⁴, Yao Li⁵, Caiwen Ding⁶, Yanzhi Wang³, Yi Liang², Dongkuan Xu¹

North Carolina State University

Web: https://tangshengku.github.io/

05-31-2023