DualRefine: Self-Supervised Depth and Pose Estimation Through Iterative Epipolar Sampling and Refinement Toward Equilibrium

Antyanta Bangunharcana¹, Ahmed Magd², Kyung-Soo Kim¹

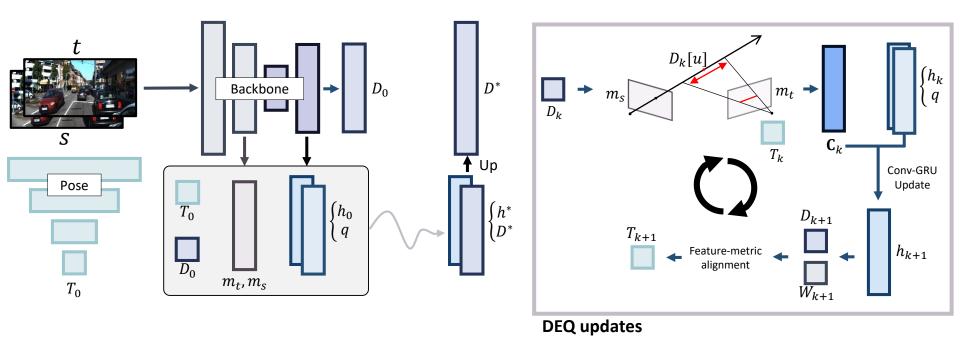
¹Mechatronics, Systems, and Control Laboratory, ²Vehicular Systems Design and Control Lab Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023

Overview

DualRefine *

Train a network that refines both the depth and pose estimates toward an equilibrium •



Introduction : Background and Motivation

Background **

Depth and pose estimation for robotics, autonomous driving, and AR/VR •

/lechatronics

Introduction : Background and Motivation

Background

Self-supervised depth and pose estimation •

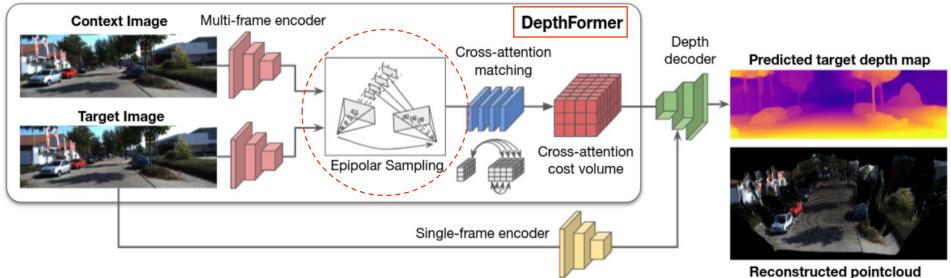


MonoDepth2

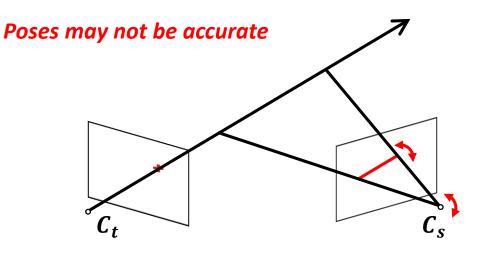
Godard, Clément, et al. "Digging into self-supervised monocular depth esti mation." Proceedings of the IEEE/CVF International Conference on Compu ter Vision. 2019.

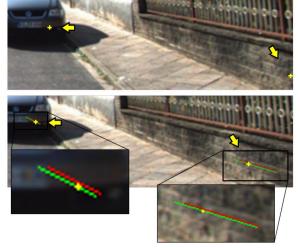
Introduction : Background and Motivation

DepthFormer



Guizilini, Vitor, et al. "Multi-frame self-supervised depth with transformers." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

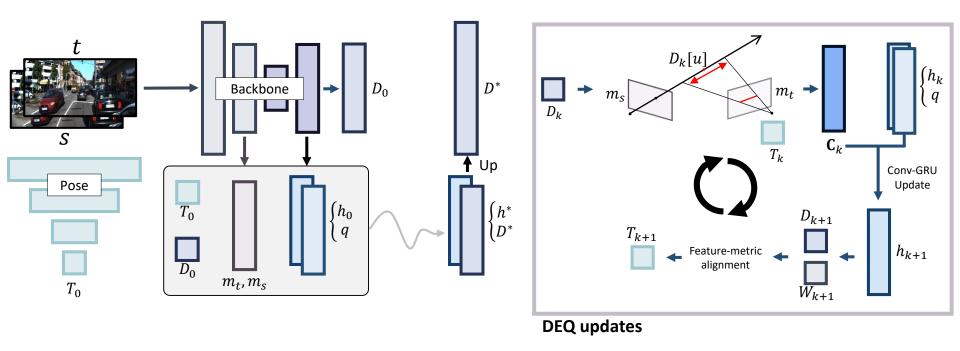




Methodology: Overview

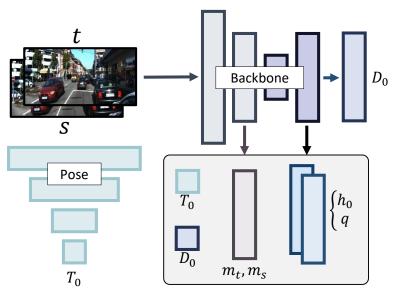
DualRefine **

Train a network that refines both the depth and pose estimates toward an equilibrium •



Initial estimates

- Estimate initial D_0 and T_0 using baseline models (*e.g.*, MonoDepth2)
 - We use DIFFNet^{\dagger} for its SoTA accuracy



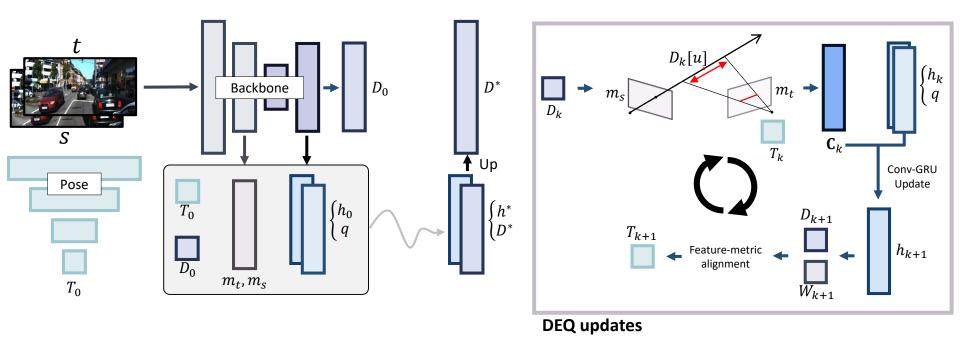
The initial estimates serve two purposes:

- 1. Initial states for the refinement steps
- 2. Teacher constraint for the refined estimates[‡]
- Extract hidden feature maps

¹Zhou, Hang, David Greenwood, and Sarah Taylor. "Self-supervised monocular depth estimation with internal feature fusion." *arXiv preprint arXiv:2110.09482* (2021). [‡]Watson, Jamie, et al. "The temporal opportunist: Self-supervised multi-frame monocular depth." *Proceedings of the IEEE/CVF Conference on Computer Vision and Patt ern Recognition.* 2021.

Refinements **

Perform refinement updates towards equilibrium depth and pose ٠ This is implemented as a DEQ \rightarrow efficient training memory



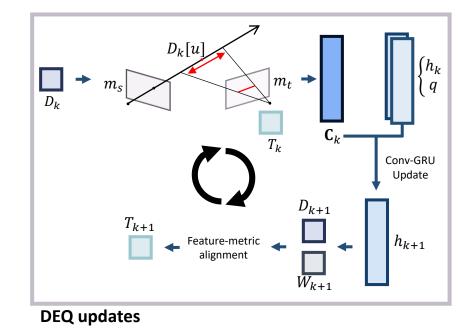
Refinements ••••

Perform refinement updates towards equilibrium depth and pose •

Update at step k

> Input: D_k and T_k (h_k) Output: D_{k+1} and T_{k+1} (h_{k+1})

- Sample matching costs C_k locally 1.
- Conv-GRU to update the hidden states 2.
- 3. Compute depth updates ΔD_k and per-pixel matching confidence
- Compute updated pose T_{k+1} 4.



/lechatronics

✤ Refinements

• Perform refinement updates towards equilibrium depth and pose

Vechatronics.

Monocular estimates ••••

- **KITTI** dataset •
- Losses based on Monodepth2 and Manydepth • with modifications to train both depth and pose refinements

	Method	Test frames	Semantics	W imes H	Abs Rel↓	Sq Rel↓	$RMSE \downarrow$	RMSE log \downarrow	$\delta_1\uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$
	Ranjan <i>et al</i> . [73]	1		832×256	0.148	1.149	5.464	0.226	0.815	0.935	0.973
	EPC++ [62]	1		832×256	0.141	1.029	5.350	0.216	0.816	0.941	0.976
	Struct2depth (M) [11]	1	•	416×128	0.141	1.026	5.291	0.215	0.816	0.945	0.979
	Videos in the wild [29]	1	•	416×128	0.128	0.959	5.230	0.212	0.845	0.947	0.976
	Guizilini et al. [33]	1	•	640 imes 192	0.102	0.698	4.381	0.178	0.896	0.964	0.984
res	Johnston et al. [45]	1		640×192	0.106	0.861	4.699	0.185	0.889	0.962	0.982
	Monodepth2 [26]	1		640×192	0.115	0.903	4.863	0.193	0.877	0.959	0.981
mid	Packnet-SFM [31]	1		640×192	0.111	0.785	4.601	0.189	0.878	0.960	0.982
&	Li <i>et al.</i> [54]	1		416×128	0.130	0.950	5.138	0.209	0.843	0.948	0.978
MO	DIFFNet [109]	1		640×192	0.102	0.764	4.483	0.180	0.896	0.965	0.983
Г	DualRefine-initial (D ₀)	1		640 × 192	0.103	0.721	4.476	0.180	0.891	<u>0.965</u>	0.984
	Patil <i>et al</i> . [70]	NŤ		640 × 192	0.111	0.821	4.650	0.187	0.883	0.961	0.982
	Wang <i>et al.</i> [93]	2 (-1, 0)		640×192	0.106	0.799	4.662	0.187	0.889	0.961	0.982
	ManyDepth (MR) [95]	2 (-1, 0)	2021	640×192	0.098	0.770	4.459	0.176	0.900	<u>0.965</u>	0.983
	DepthFormer [32]	<u>2 (-1, 0)</u>	2022	640×192	0.090	0.661	<u>4.149</u>	0.175	<u>0.905</u>	0.967	<u>0.984</u>
	DualRefine-refined (D [*])	2 (-1, 0)		640×192	0.087	<u>0.698</u>	<u>4.234</u>	0.170	0.914	0.967	<u>0.983</u>
res	DRO [30]	2 (-1, 0)		960×320	0.088	0.797	4.464	0.212	0.899	0.959	0.980
	Wang <i>et al.</i> [93]	2 (-1, 0)		1024×320	0.106	0.773	4.491	0.185	0.890	0.962	0.982
High	ManyDepth (HR ResNet50) [95]	2 (-1, 0)		1024×320	<u>0.091</u>	<u>0.694</u>	4.245	<u>0.171</u>	<u>0.911</u>	<u>0.968</u>	<u>0.983</u>
	DualRefine-refined (HR) (D^*)	2 (-1, 0)		960 imes 288	0.087	0.674	4.130	0.167	0.915	0.969	0.984

- The refinement procedure massively improves the initial estimates •
- Competitive with SoTA DepthFormer that is based on heavy Transformer-based architecture, ٠ while requiring less than 1/8 their memory (2GB vs 16GB per batch)
- The current proposed model can run between 15~25 fps

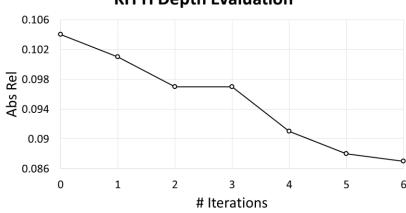
/lechatronics

Monocular depth and relative poses

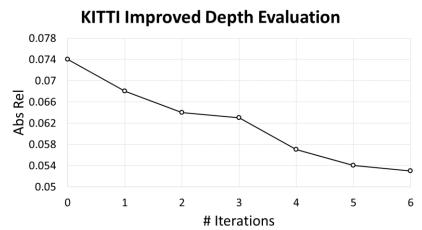
Accuracy/error vs num iterations

- KITTI depth and improved depth data •
- Abs Rel indicates the absolute relative error to ground truth •

# iters	Abs Rel↓	Sq Rel↓	RMSE↓	RMSE log \downarrow	$\delta_1\uparrow$	$\delta_2\uparrow$	$\delta_3\uparrow$
0	0.104	0.778	4.495	0.181	0.894	0.965	0.983
1	0.101	0.743	4.405	0.179	0.902	0.966	0.983
2	0.097	0.708	4.302	0.176	0.909	0.967	0.983
3	0.097	0.711	4.312	0.176	0.908	0.967	0.983
4	0.091	0.700	4.259	0.172	0.913	0.967	0.983
5	0.088	0.697	4.239	0.170	0.914	0.967	0.983
6	0.087	0.698	4.234	0.170	0.914	0.967	0.983
7	0.088	0.696	4.230	0.171	0.913	0.967	0.983
8	0.088	0.695	4.229	0.172	0.912	0.966	0.983
9	0.089	0.693	4.234	0.173	0.911	0.966	0.983



# iters	Abs Rel↓	Sq Rel↓	$RMSE \downarrow$	RMSE log \downarrow	$\delta_1\uparrow$	$\delta_2\uparrow$	$\delta_3\uparrow$
0	0.074	0.389	3.390	0.115	0.940	0.990	0.997
1	0.068	0.344	3.201	0.106	0.950	0.991	0.997
2	0.064	0.311	3.100	0.101	0.956	0.992	0.998
3	0.063	0.314	3.105	0.101	0.956	0.992	0.998
4	0.057	0.299	3.029	0.096	0.960	0.992	0.998
5	0.054	0.293	2.995	0.093	0.961	0.992	0.998
6	0.053	0.290	2.974	0.092	0.962	0.992	0.998
7	0.052	0.287	2.962	0.092	0.962	0.992	0.998
8	0.053	0.285	2.963	0.093	0.961	0.992	0.998
9	0.054	0.286	2.979	0.094	0.960	0.992	0.998



Monocular depth and relative poses

Ablation

- Importance of pose updates
- What effects the pixel weighting for the pose updates towards the depth accuracy
- The impact of pose refinement for computing accurate consistency masks

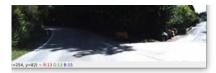
Pose Updates	Consistency mask	Abs Rel	Sq Rel	RMSE	δ_1	δ_2
no update	T_0	0.097	0.713	4.462	0.898	0.964
no weights	T_0	0.091	0.694	4.271	0.909	0.967
no $W_{h,k}$	T_0	0.090	0.667	4.252	0.909	0.967
no W_q	T_0	0.093	0.686	4.258	0.908	0.967
W_q and $W_{h,k}$	T_0	0.090	0.669	4.293	0.910	0.967
no weights	T^*	0.092	0.667	4.257	0.908	0.967
no $W_{h,k}$	T^*	0.091	0.666	4.243	0.909	0.967
no W_q	T^*	0.088	0.674	4.251	0.911	0.966
W_q and $\hat{W}_{h,k}$	T^*	0.087	0.698	4.234	0.914	0.967

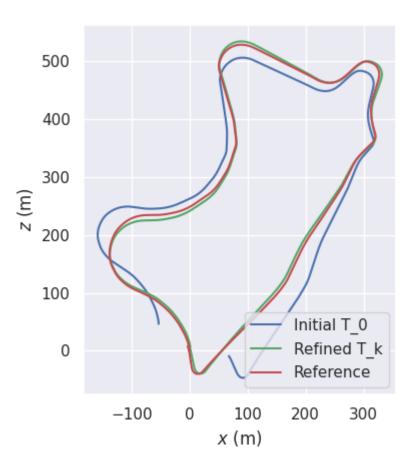
Table 2. Ablation experiment for the effect of pose updates

Monocular depth and relative poses

✤ Monocular estimates

KITTI Visual odometry KITTI sequence 9 •





Quantitative results

• KITTI Visual odometry Sequence 9 and 10 (common evaluation sequence)

Methods		Seq 9		Seq 10			
wiethous	$t_{err}(\%)\downarrow$	$r_{err}(^{\circ}/100m)\downarrow$	ATE $(m) \downarrow$	$t_{err}(\%)\downarrow$	$r_{err}(^{\circ}/100m)\downarrow$	ATE $(m) \downarrow$	
ORB-SLAM2 [68] (w/o LC)	9.67	0.3	44.10	4.04	0.3	6.43	
2017 ORB-SLAM2 [68]	3.22	0.4	8.84	4.25	0.3	8.51	
SfMLearner [110]	19.15	6.82	77.79	40.40	17.69	67.34	
GeoNet [102]	28.72	9.8	158.45	23.90	9.0	43.04	
DeepMatchVO [76]	9.91	3.8	27.08	12.18	5.9	24.44	
Monodepth2 [26]	17.17	3.85	76.22	11.68	5.31	20.35	
DW [29]-Learned	-	-	20.91	-	-	17.88	
DW [29]-Corrected	-	-	19.01	-	-	14.85	
SC-Depth [8]	7.31	3.05	23.56	7.79	4.90	12.00	
2020 Zou <i>et al</i> . [111]	<u>3.49</u>	1.00	<u>11.30</u>	5.81	<u>1.8</u>	11.80	
2021 P-RGBD SLAM [9]	5.08	1.05	13.40	4.32	2.34	7.99	
DualRefine-initial (<i>T</i> ₀)	9.06	2.59	39.31	9.45	4.05	15.13	
DualRefine-refined (T*)	3.43	<u>1.04</u>	5.18	<u>6.80</u>	1.13	<u>10.85</u>	

- Competitive odometry accuracy to SoTA
 - Currently the proposed method only utilizes frames at t 1 and t,
 - while ORB-SLAM2 (full) performs local bundle adjustments and global loop closure optimization.
 - Zou et al. perform training with global optimization,
 - and P-RGBD SLAM also integrates global loop closure optimization

Conclusion

What's next? **

- **Current limitations:** •
 - Dynamic objects, non-Lambertian surfaces due to higher reliance on geometry —

Further details •...

https://github.com/antabangun/DualRefine

https://antabangun.github.io/projects /DualRefine/index.html

Project Page

