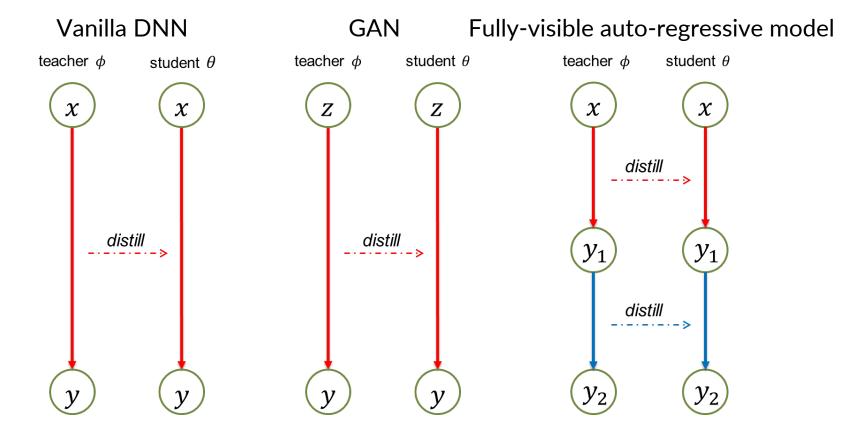
A Unified Knowledge Distillation Framework for Deep Directed Graphical Models

Yizhuo Chen, Kaizhao Liang, Zhe Zeng, Shuochao Yao, Huajie Shao

University of Illinois Urbana-Champaign College of William & Mary University of California, Los Angeles George Mason University

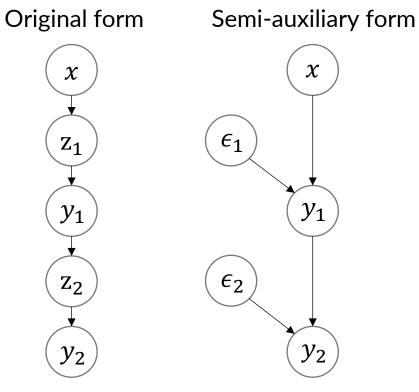
Summary

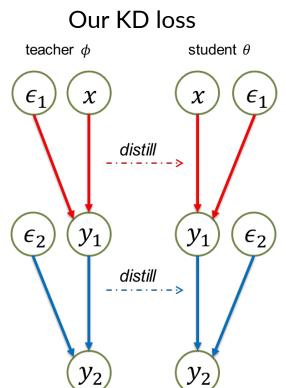
- Knowledge Distillation (KD) : Transferring knowledge from a teacher to a student model.
- Motivation: all existing KD methods were only applicable to limited, specific types of Directed Graphical Models (DGM) exclusively.
- Goal: propose a unified framework enabling KD for general DGMs.



Summary

- Semi-auxiliary Form: reparametrize all latent variables
- Novel KD loss on semi-auxiliary form
 - Tractable
 - Shallower
 - Upper bound to vanilla KD
 - Proper generalization to multiple KD methods

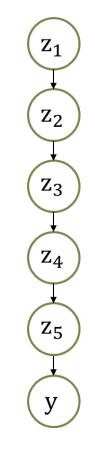


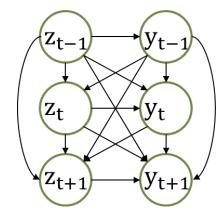


Summary

• Evaluation Results: Our method showed better performance on

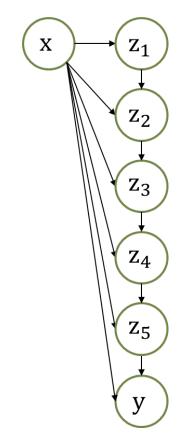
Data-free VAE compression Data-free VRNN compression Data-free HM compression VAE continual learning



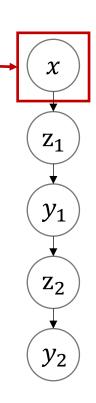


$$z_1$$

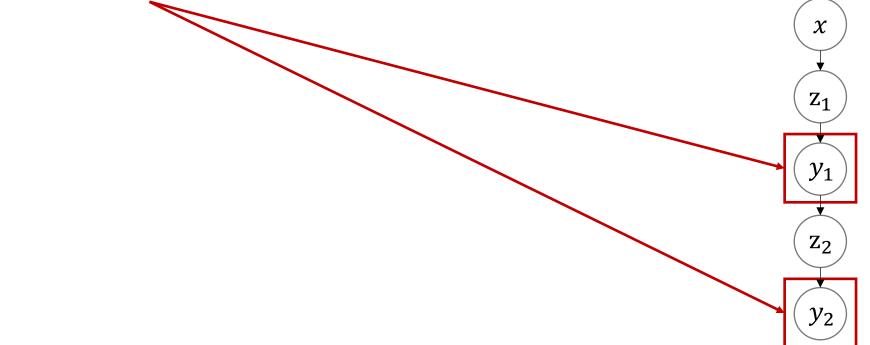
 z_2
 y_1
 z_3
 z_4
 z_4
 y_2



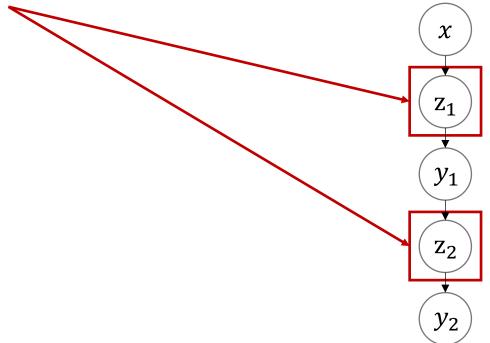
- Directed Graphical Model
 - Multiple input, target as well as latent variables



- Directed Graphical Model
 - Multiple input, target as well as latent variables



- Directed Graphical Model
 - Multiple input, target as well as **latent** variables



- Directed Graphical Model
 - Multiple input, target as well as latent variables
 - **Complex** dependence structure

Х

 \mathbf{Z}_1

 y_1

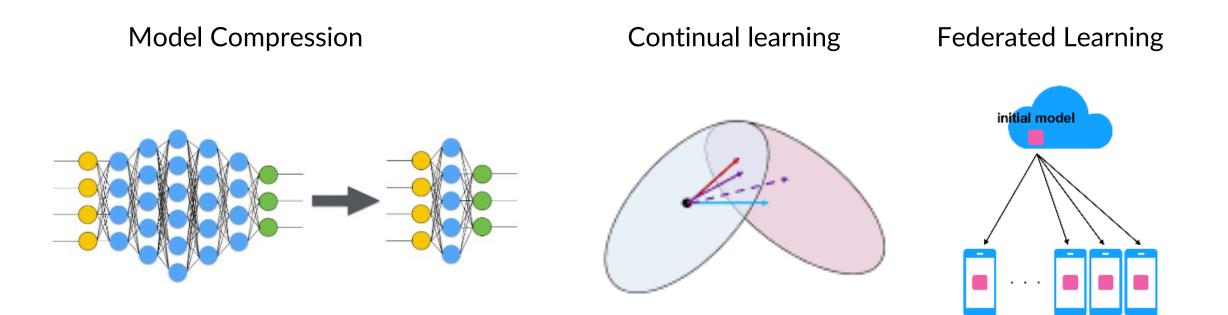
 $\mathbf{Z}_{\mathbf{2}}$

 y_2

- Directed Graphical Model
 - Multiple input, target as well as latent variables
 - Complex dependence structure
 - Parameterized by **Deep Neural Networks**-

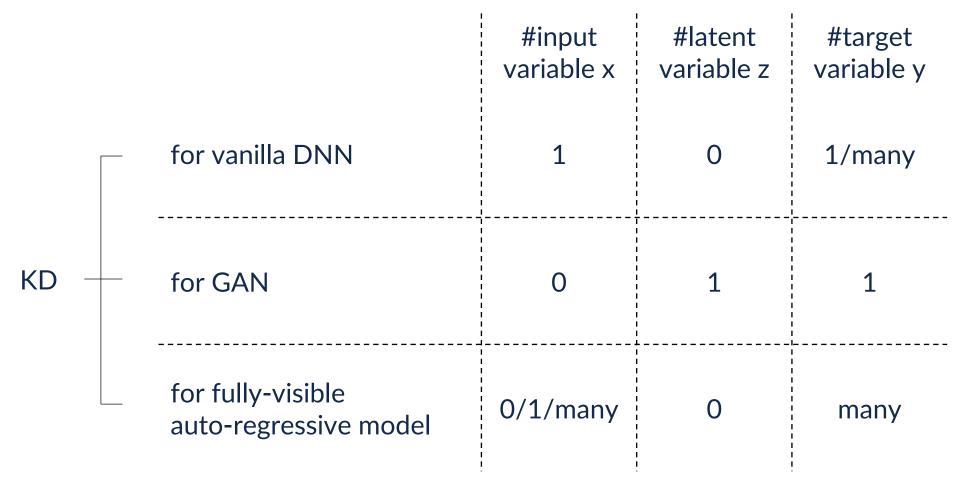
 ${\mathcal X}$

- Knowledge Distillation (KD)
 - Transferring knowledge from a teacher to a student model
 - Applications:



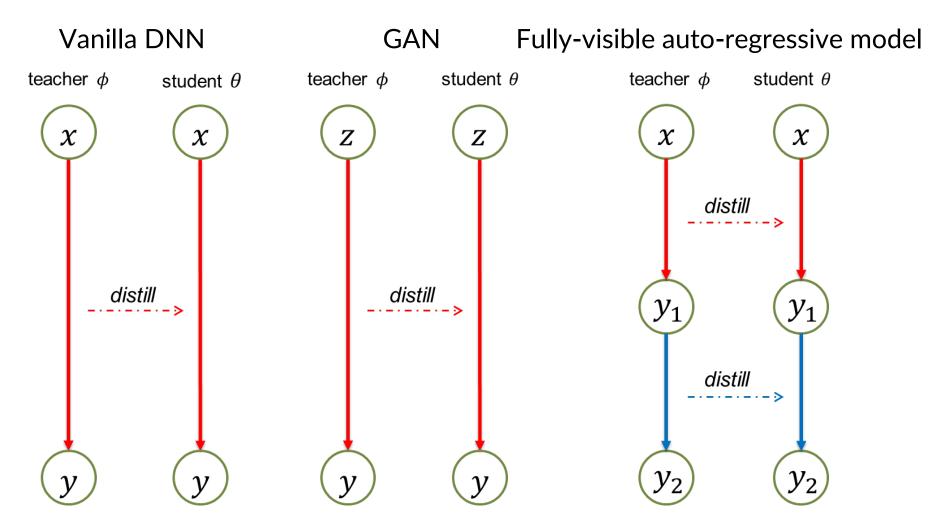
Motivation

• Motivation: all existing KD methods were applicable to limited, specific types of DGMs exclusively.



Motivation

• Motivation: all existing KD methods were applicable to limited, specific types of DGMs exclusively.



Challenge

- Goal: Propose a unified framework enabling KD for general DGMs.
- Vanilla KD loss:

$$\mathcal{L}_{kd} = \mathbb{E}_{p_{data}(\boldsymbol{x})} \left[d(p_{\phi}(\boldsymbol{y}|\boldsymbol{x}), p_{\theta}(\boldsymbol{y}|\boldsymbol{x}))
ight]$$

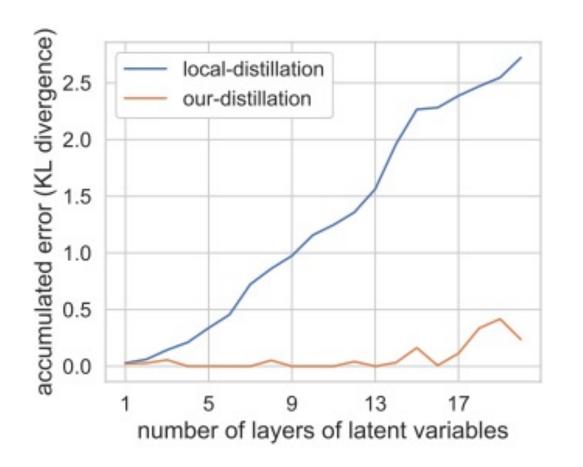
• Naïve Method 1: Marginalized Distillation: marginalize all latent variables

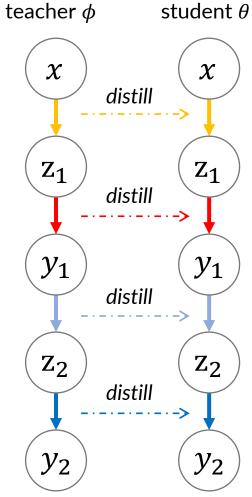
$$p(\boldsymbol{y}|\boldsymbol{x}) = \int p(\boldsymbol{y}, \boldsymbol{z}|\boldsymbol{x}) d\boldsymbol{z}.$$

Generally Intractable

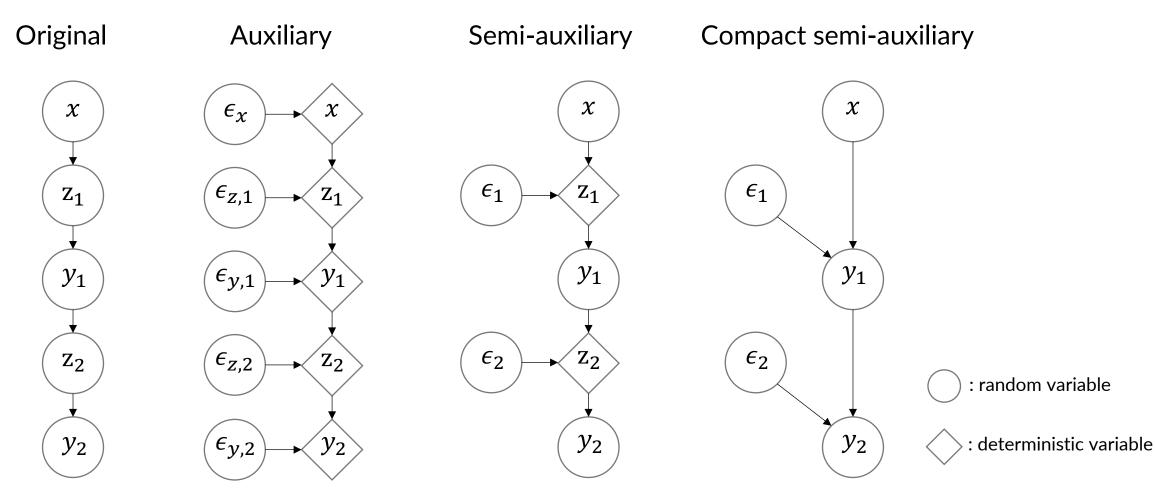
Challenge

Naïve Method 2: Local Distillation: apply distillation in a layer-wise manner
 Imitation error accumulation





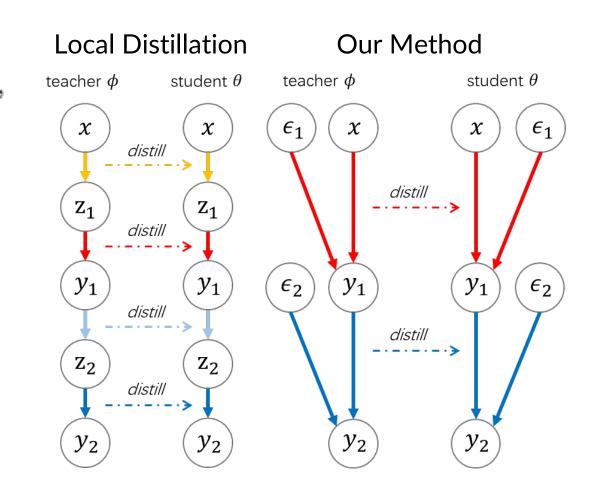
• Semi-auxiliary Form: reparametrize all latent variables



Surrogate Distillation Loss

 $\mathcal{L}_{sd} = \mathbb{E}_{p_{\phi}(\boldsymbol{\epsilon})p_{data}(\boldsymbol{x})} \left[d(p_{\phi}(\boldsymbol{y}|\boldsymbol{\epsilon}, \boldsymbol{x}), p_{\theta}(\boldsymbol{y}|\boldsymbol{\epsilon}, \boldsymbol{x})) \right],$

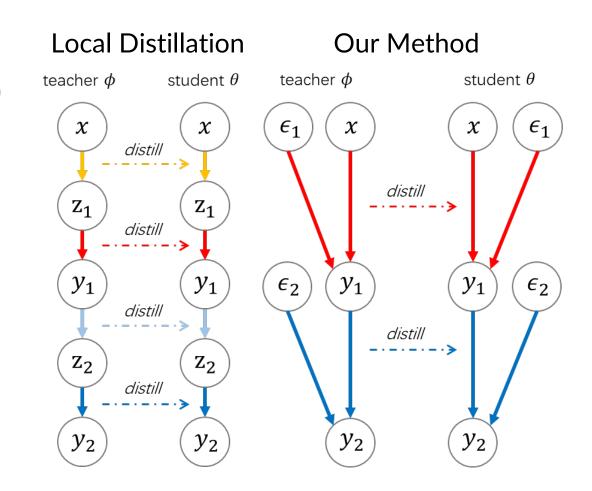
- Upper bound of vanilla KD loss
- Compared with marginalized distillation: tractability
- Compared with local distillation: shallowness



Surrogate Distillation Loss

$$\mathcal{L}_{sd} = \mathbb{E}_{p_{\phi}(\boldsymbol{\epsilon}) p_{data}(\boldsymbol{x})} \left[d(p_{\phi}(\boldsymbol{y} | \boldsymbol{\epsilon}, \boldsymbol{x}), p_{\theta}(\boldsymbol{y} | \boldsymbol{\epsilon}, \boldsymbol{x})) \right],$$

- Upper bound of vanilla KD loss
- Compared with marginalized distillation: tractability
- Compared with local distillation: shallowness



- Surrogate Distillation Loss
 - Is unable to back-propagate when there is discrete latent variable
 - Might be hard to optimize when structure is deep
- Latent Distillation Loss: penalize dissimilarity of latent variables

$$\mathcal{L}_{z,i} = \mathbb{E}_{p_{\phi}(\boldsymbol{\epsilon})p_{data}(\boldsymbol{x})} \left[d(p_{\phi}(\boldsymbol{z}_{i} | \boldsymbol{\epsilon}_{< i}, \boldsymbol{x}), p_{\theta}(\boldsymbol{z}_{i} | \boldsymbol{\epsilon}_{< i}, \boldsymbol{x})) \right]$$

• Our Final Loss:

$$\mathcal{L}_{our} = \mathcal{L}_{sd} + \lambda \sum_{i} \mathcal{L}_{z,i},$$

- Surrogate Distillation Loss
 - Is unable to back-propagate when there is discrete latent variable
 - Might be hard to optimize when structure is deep
- Latent Distillation Loss: penalize dissimilarity of latent variables

$$\mathcal{L}_{z,i} = \mathbb{E}_{p_{\phi}(\boldsymbol{\epsilon}) p_{data}(\boldsymbol{x})} \left[d(p_{\phi}(\boldsymbol{z}_{i} | \boldsymbol{\epsilon}_{< i}, \boldsymbol{x}), p_{\theta}(\boldsymbol{z}_{i} | \boldsymbol{\epsilon}_{< i}, \boldsymbol{x})) \right]$$

• Our Final Loss:

$$\mathcal{L}_{our} = \mathcal{L}_{sd} + \lambda \sum_{i} \mathcal{L}_{z,i},$$

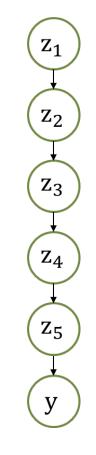
- Fast Implementation: Requires only an ordinary forward pass of teacher and student model to calculate the loss
- Our method is a **proper generalization** of:
 - Vanilla KD and Sequence-Level KD: when no latent variable
 - Feature based KD: when choose Wasserstein Distance in Latent Distillation Loss
 - GAN distillation:

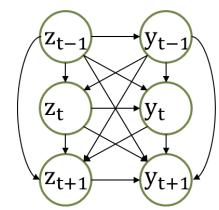
when no input variable & choose Wasserstein Distance in Latent Distillation Loss

Evaluation

• Evaluation Results: Our method showed better performance on

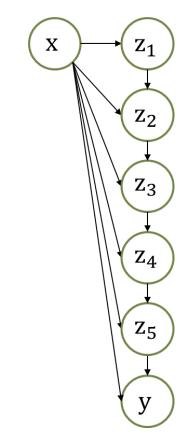
Data-free VAE compression Data-free VRNN compression Data-free HM compression VAE continual learning





$$z_1$$

 z_2
 y_1
 z_3
 z_4
 y_2



Evaluation

Results of Data-free VAE Compression

dataset	method	#param	$FID(\downarrow)$	EMD (↓)	MMD (↓)	1NN (↓)	FID-T (↓)	EMD-T (↓)	MMD-T (↓)	1NN-T (↓)
CelebA	teacher	6.60M	4.95	8.54	0.24	0.89	-	-	-	-
	our	0.44M	$\textbf{5.38} \pm \textbf{0.10}$	$\textbf{8.77} \pm \textbf{0.06}$	$\textbf{0.27} \pm \textbf{0.01}$	$\textbf{0.92} \pm \textbf{0.01}$	$\textbf{0.019} \pm \textbf{0.002}$	$\textbf{6.48} \pm \textbf{0.04}$	$\textbf{0.12} \pm \textbf{0.00}$	0.17 ± 0.01
	local	0.44M	6.23 ± 0.17	9.25 ± 0.11	0.33 ± 0.01	0.95 ± 0.00	0.052 ± 0.006	8.32 ± 0.14	0.26 ± 0.02	0.82 ± 0.02
	scratch	0.44M	6.10 ± 0.31	9.08 ± 0.16	0.33 ± 0.02	0.95 ± 0.01	0.052 ± 0.016	8.34 ± 0.36	0.26 ± 0.05	0.82 ± 0.05
	our	0.12M	$\textbf{5.96} \pm \textbf{0.12}$	$\textbf{9.06} \pm \textbf{0.09}$	$\textbf{0.31} \pm \textbf{0.01}$	$\textbf{0.95} \pm \textbf{0.00}$	$\textbf{0.036} \pm \textbf{0.005}$	$\textbf{8.04} \pm \textbf{0.11}$	$\textbf{0.23} \pm \textbf{0.01}$	$\textbf{0.79} \pm \textbf{0.02}$
	local	0.12M	8.95 ± 0.19	11.24 ± 0.16	0.50 ± 0.01	0.99 ± 0.00	0.157 ± 0.018	10.82 ± 0.17	0.47 ± 0.01	0.99 ± 0.00
	scratch	0.12M	8.18 ± 0.15	10.50 ± 0.14	0.45 ± 0.01	0.99 ± 0.00	0.095 ± 0.007	9.98 ± 0.03	0.43 ± 0.00	0.97 ± 0.00
	our	0.04M	$\textbf{8.20} \pm \textbf{0.12}$	$\textbf{10.66} \pm \textbf{0.12}$	$\textbf{0.45} \pm \textbf{0.01}$	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{0.069} \pm \textbf{0.004}$	$\textbf{9.91} \pm \textbf{0.06}$	$\textbf{0.40} \pm \textbf{0.00}$	$\textbf{0.98} \pm \textbf{0.00}$
	local	0.04M	11.08 ± 0.27	12.79 ± 0.22	0.62 ± 0.01	1.00 ± 0.00	0.139 ± 0.015	12.80 ± 0.28	0.64 ± 0.01	1.00 ± 0.00
	scratch	0.04M	9.57 ± 0.14	11.46 ± 0.11	0.55 ± 0.01	1.00 ± 0.00	0.093 ± 0.004	11.19 ± 0.13	0.56 ± 0.02	1.00 ± 0.00
SVHN	teacher	5.39M	4.19	7.98	0.17	0.80	-	-	-	-
	our	0.10M	$\textbf{4.38} \pm \textbf{0.05}$	$\textbf{7.94} \pm \textbf{0.04}$	$\textbf{0.19} \pm \textbf{0.00}$	$\textbf{0.81} \pm \textbf{0.00}$	$\textbf{0.028} \pm \textbf{0.006}$	$\textbf{6.90} \pm \textbf{0.05}$	$\textbf{0.14} \pm \textbf{0.01}$	0.47 ± 0.02
	local	0.10M	5.93 ± 0.50	8.66 ± 0.32	0.30 ± 0.04	0.95 ± 0.02	0.108 ± 0.019	9.29 ± 0.41	0.40 ± 0.04	0.98 ± 0.01
	scratch	0.10M	4.69 ± 0.16	8.04 ± 0.12	0.21 ± 0.01	0.85 ± 0.01	0.037 ± 0.006	7.86 ± 0.10	0.22 ± 0.01	0.80 ± 0.02
	our	0.03M	$\textbf{4.81} \pm \textbf{0.06}$	$\textbf{8.10} \pm \textbf{0.03}$	$\textbf{0.22} \pm \textbf{0.01}$	$\textbf{0.87} \pm \textbf{0.01}$	$\textbf{0.031} \pm \textbf{0.012}$	$\textbf{7.82} \pm \textbf{0.08}$	$\textbf{0.23} \pm \textbf{0.01}$	$\textbf{0.82} \pm \textbf{0.03}$
	local	0.03M	6.95 ± 0.35	9.40 ± 0.28	0.37 ± 0.02	0.98 ± 0.01	0.153 ± 0.017	10.39 ± 0.21	0.49 ± 0.02	1.00 ± 0.00
	scratch	0.03M	5.84 ± 0.32	8.62 ± 0.18	0.31 ± 0.02	0.92 ± 0.01	0.080 ± 0.009	9.10 ± 0.22	0.39 ± 0.03	0.95 ± 0.01
	our	0.01M	$\textbf{6.71} \pm \textbf{0.38}$	$\textbf{9.22} \pm \textbf{0.31}$	$\textbf{0.36} \pm \textbf{0.03}$	$\textbf{0.96} \pm \textbf{0.01}$	$\textbf{0.055} \pm \textbf{0.011}$	$\textbf{9.13} \pm \textbf{0.11}$	$\textbf{0.37} \pm \textbf{0.02}$	$\textbf{0.98} \pm \textbf{0.00}$
	local	0.01M	8.26 ± 0.37	10.40 ± 0.35	0.45 ± 0.02	1.00 ± 0.00	0.170 ± 0.015	11.25 ± 0.25	0.55 ± 0.01	1.00 ± 0.00
	scratch	0.01M	7.73 ± 0.28	9.95 ± 0.25	0.43 ± 0.01	0.99 ± 0.00	0.063 ± 0.015	10.22 ± 0.18	0.49 ± 0.01	0.99 ± 0.00
Cifar10	teacher	5.39M	4.63	7.57	0.25	0.89	-	-	-	-
	our	0.10M	$\textbf{5.47} \pm \textbf{0.23}$	$\textbf{8.16} \pm \textbf{0.20}$	$\textbf{0.31} \pm \textbf{0.02}$	$\textbf{0.92} \pm \textbf{0.01}$	$\textbf{0.024} \pm \textbf{0.006}$	$\textbf{6.29} \pm \textbf{0.08}$	$\textbf{0.19} \pm \textbf{0.01}$	0.48 ± 0.01
	local	0.10M	6.22 ± 0.05	8.61 ± 0.06	0.37 ± 0.00	0.94 ± 0.00	0.036 ± 0.003	7.58 ± 0.08	0.31 ± 0.01	0.91 ± 0.01
	scratch	0.10M	6.19 ± 0.25	8.54 ± 0.15	0.38 ± 0.02	0.95 ± 0.01	0.034 ± 0.005	7.27 ± 0.12	0.28 ± 0.03	0.83 ± 0.03
	our	0.03M	$\textbf{6.11} \pm \textbf{0.16}$	$\textbf{8.59} \pm \textbf{0.11}$	$\textbf{0.36} \pm \textbf{0.01}$	$\textbf{0.95} \pm \textbf{0.01}$	$\textbf{0.036} \pm \textbf{0.013}$	$\textbf{7.29} \pm \textbf{0.11}$	$\textbf{0.28} \pm \textbf{0.01}$	$\textbf{0.82} \pm \textbf{0.02}$
	local	0.03M	7.55 ± 0.09	9.66 ± 0.05	0.45 ± 0.00	0.97 ± 0.00	0.052 ± 0.003	9.08 ± 0.07	0.44 ± 0.01	0.99 ± 0.00
	scratch	0.03M	6.74 ± 0.36	8.95 ± 0.27	0.42 ± 0.03	0.96 ± 0.01	0.037 ± 0.007	7.84 ± 0.29	0.35 ± 0.03	0.93 ± 0.02
	our	0.01M	$\textbf{7.61} \pm \textbf{0.91}$	$\textbf{9.65} \pm \textbf{0.79}$	$\textbf{0.47} \pm \textbf{0.05}$	$\textbf{0.98} \pm \textbf{0.01}$	$\textbf{0.045} \pm \textbf{0.016}$	$\textbf{8.48} \pm \textbf{0.78}$	$\textbf{0.42} \pm \textbf{0.05}$	$\textbf{0.96} \pm \textbf{0.02}$
	local	0.01M	10.53 ± 0.74	12.10 ± 0.71	0.64 ± 0.03	1.00 ± 0.00	0.085 ± 0.015	11.38 ± 0.69	0.62 ± 0.02	1.00 ± 0.00
	scratch	0.01M	10.17 ± 1.13	11.67 ± 1.01	0.64 ± 0.06	1.00 ± 0.00	0.067 ± 0.023	10.56 ± 0.99	0.61 ± 0.05	1.00 ± 0.00

Conclusion

- We proposed a unified KD framework for general DGMs, which
 - converted DGMs to the proposed semi-auxiliary form
 - combined 2 novel KD losses
 - generalized to multiple existing methods
 - applied to various types of DGMs and tasks

Thank you