

MMG-EGO4D: MULTI-MODAL GENERALIZATION IN EGOCENTRIC ACTION RECOGNITION

TUE-PM-225

XINYU GONG, SREYAS MOHAN, NAINA DHINGRA, JEAN-CHARLES BAZIN, YILEI LI, ZHANGYANG WANG, RAKESH RANJAN

Meta Reality Lab Visual Informatics Group @ The University of Texas at Austin (VITA)

Egocentric Action Recognition: Ubiquitous in Daily Life

An egocentric view example of "using phone".

Multi-Modal Generalization (MMG)

MMG investigates system generalizability under limited or absent data modalities.

- missing modality generalization: During inference, some modalities present at training are absent.
- <u>cross-modal zero-shot generalization</u>: Training and inference modalities are disjoint.

Settings: Few-shot & Many-shot

Intriguing, isn't it? But what are its practical applications?

Motivation

Missing Modality Evaluation

User Case 1: Users only allow partial device access (camera, microphone, etc.). **Solution**: Deploy a multimodal model robust to different input modalities.

- 1. Why partial access? *Reasons include user privacy and location-specific restrictions (e.g., libraries, where audio isn't available).*
- 2. Why using a single model to deal with different input modalities? *Storage efficiency*.

Motivation

Cross-Modal Zero-Shot Evaluation

User case 2: Customizing user devices to learn specific visual actions.

Solution: Implement an efficient few-shot learner, capable of learning novel visual representations from inexpensive, locally sourced modalities.

- 1. Why learn locally? *To respect user privacy.*
- 2. Why use cheap data (audio, IMU) to train? *Training with video data is very expensive*.
- 3. Why few-shot examples? *It's impractical to ask users collect more data*.
- 4. Why use video data for inference? *Video data is highly informative, thus promoting accurate predictions.*

Modality	video	audio	IMU
Memory per second of data (KB)	593.92	62.76	9.44
Typical model FLOPs (G)	70.50	42.08	1.65

MMG-Ego4D Dataset

The MMG-Ego4D dataset includes data points across three modalities—<u>video</u>, <u>audio</u>, and <u>inertial</u> <u>motion (IMU)</u>—derived from the Ego4D dataset.

- **Task**: MMG egocentric action recognition under both many-shot and few-shot settings.
- **Data** : <u>167-hour unlabeled</u> and <u>35-hour of labeled</u> temporal-aligned Video-Audio-IMU data.
- **Label**: Consisting of 79 classes in total, with 65 base classes and 14 novel classes designated for few-shot tasks. Each sample has a single label.

A Streamlined Multimodal Transformer Architecture

Model	FLOPs (G)	Param (M)	Modality	5 Way 5 Shot Accuracy	Top-1 Accuracy
MViT-B [15]	70.50	36.50	video	58.89	52.40
AST [26]	42.08	87.03	audio	31.06	39.48
IMU Transformer	1.65	15.55	IMU	40.07	29.78

Overview of Training Pipeline

For Many-shot scenarios:

- Regular/Missing-Modal: (1) Unimodal supervised pre-training, (2) Multimodal supervised training
- Cross-Modal Zero-Shot: (1) Multimodal unsupervised pre-training, (2) Multimodal supervised training

For Few-shot scenarios :

• All tasks: (1) Unimodal supervised pre-training, (2) Multimodal supervised training, (3) Multimodal metatraining

Setting	Task Multimodal pre-train		Unimodal supervised pre-train	Multimodal supervised train	Multimodal meta-train	
	Regular	-	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{CE} + \mathcal{L}_{align}$	-	
Many-shot	Missing Modal	-	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{ ext{CE}} + \mathcal{L}_{ ext{align}}$	-	
	Zero-Shot	$\mathcal{L}_{ ext{align}}$	-	$\mathcal{L}_{ ext{CE}}$	-	
	Regular	-	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{ ext{CE}} + \mathcal{L}_{ ext{align}}$	$\mathcal{L}_{ ext{proto}}$	
Few-shot	Missing Modal	-	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{ ext{CE}} + \mathcal{L}_{ ext{align}}$	$\mathcal{L}_{\mathrm{proto}}$	
	Zero-Shot	-	$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{\text{CE}} + \mathcal{L}_{\text{align}}$	$\mathcal{L}_{\mathrm{proto}}$	

NCE Loss

←---→

←---→

←---

Multimodal Alignment Contrastive Loss

10

Cross-modal Prototypical Loss

- O Support feature from video modality.
- \bigwedge Query feature from audio modality.

We meta-train the multimodal system using cross-modal prototypical loss.

Core idea: Calculate the distance between support and query embeddings of different modalities.

Results from Multimodal Few-Shot Evaluation

Model	FLOPs (G)	Param (M)	Modality	5 Way 5 Shot Accuracy
MViT-B [15]	70.50	36.50	video	58.89
AST [26]	42.08	87.03	audio	31.06
IMU Transformer	1.65	15.55	IMU	40.07

Unimodal Results

Eval. Setting	Suppo	ort Moda	lities	Quei	y Modal	5 Way 5 Shot	
	Video	Audio	IMU	Video	Audio	IMU	Accuracy
Regular	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	63.00
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		61.76
g lý	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	50.77
Missin Modali	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	62.79
	\checkmark	\checkmark	\checkmark	\checkmark			62.68
	\checkmark	\checkmark	\checkmark		\checkmark		43.65
	\checkmark	\checkmark	\checkmark			\checkmark	47.48
		\checkmark		\checkmark			46.90
t E			\checkmark	\checkmark			42.07
Zero-Shc Evaluatio		\checkmark	\checkmark	\checkmark			50.80
	\checkmark				\checkmark		44.01
	\checkmark					\checkmark	46.56
	\checkmark				\checkmark	\checkmark	49.37

Multimodal Results

Key Takeaways:

- 1. Our model exhibits robustness when some modalities are absent during evaluation.
- 2. Training with affordable data and evaluating with expensive but informative data yields superior results compared to training and evaluation using only affordable data.

Results from Multimodal Many-Shot Evaluation

Model	FLOPs (G)	Param (M)	Modality	Top-1 Accuracy	
MViT-B [15]	70.50	36.50	video	52.40	
AST [26]	42.08	87.03	audio	39.48	
IMU Transformer	1.65	15.55	IMU	29.78	

Unimodal Results

Eval.	Trai	n Modali	ities	Test	Top-1		
Setting	Video	Audio	IMU	Video	Audio	IMU	Accuracy
Regular	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	55.66
ity	✓	\checkmark	\checkmark	 ✓ 	\checkmark		55.47
Missir Modali	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	37.07
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	54.57
		\checkmark		 ✓ 			30.98
+ F			\checkmark	\checkmark			20.00
Zero-Sho Evaluatio		\checkmark	\checkmark	\checkmark			25.03
	\checkmark				\checkmark		43.43
	\checkmark					\checkmark	35.67
	✓				\checkmark	\checkmark	41.02

Multimodal Results

Key Takeaways:

- 1. Our model demonstrates robustness in scenarios where some modalities are absent during evaluation.
- 2. Substantial room for improvement exists in the domain of cross-modal zero-shot evaluation.

Ablation Study

Eval.	Train/Support Modal.			Test/Query Modal.		Fusion	Contrastive	Top-1	Cross-Modal	5 Way 5 Shot	
Setting	Video	Audio	IMU	Video	Audio	IMU	Module	Alignment	Accuracy	Proto. Loss	Accuracy
							Attention	\checkmark	55.66	✓	63.00
Regular	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Attention	×	52.18	\checkmark	61.16
							MLP	\checkmark	52.79	\checkmark	58.67
							Attention	\checkmark	-	×	62.37
Missing							Attention	\checkmark	37.07	\checkmark	50.77
Modality	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	Attention	×	21.32	\checkmark	40.87
Wiodanty							MLP	\checkmark	32.89	\checkmark	49.00
							Attention	\checkmark	-	×	50.03
Zana ahat							Attention	\checkmark	25.03*	\checkmark	51.40
Cross-Modal		\checkmark	\checkmark	\checkmark			Attention	×	2.37	\checkmark	33.93
Cross Woudi							MLP	\checkmark	24.54*	\checkmark	51.08
							Attention	\checkmark	-	×	50.80

Table 6. Ablation study of each design component under many-shot & few-shot settings. Our proposed components improve the performance under all evaluation settings. Note that cross-modal prototypical loss is only applied under the few-shot setting. *Different from other settings, the cross-modal contrastive alignment loss is applied at the unsupervised multimodal pre-training stage in the supervised zero-shot cross-modal setting.

Qualitative Examples

query video

Setting: Few-shot

Support modalities: audio + IMU Query Modality: video

Ground truth: Mop the floor Model Prediction: Mop the floor

THANKS!

