

历安冠子科技大学 XIDIAN UNIVERSITY

Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation

Dong Zhao, Shuang Wang*, Qi Zang, Dou Quan, Xiutiao Ye, Licheng Jiao School of Artificial Intelligence, Xidian University

shwang@mail.xidian.edu.cn*

2023.05.28

Table of Contents

厚德 求真 砺学 笃行

Summary of the Paper

01 Summary of the Paper

Our Motivations:

- Existing Unsupervised Model Adaptation (UMA) methods adopt offline selftraining (OST) but it requires expert intervention.
- Online self-training (ONST) avoids the drawback of OST by online co-evolving pseudo-labels, showing potential in unsupervised domain adaptation (UDA) with accessing source data.

ONST is more competitive than existing UMA methods;
! But ONST methods suffer from impaired *stability* and *adaptability* in UMA.

Figure. The dashed line is the ONST methods of UDA, and the solid line is the UMA methods.

How to apply ONST to UMA without accessing source data?

Contributions:

- We explore *two reasons* for the poor stability and adaptability of ONST in UMA: (1) the inopportune update of the teacher model; (2) the bias towards minority classes.
- For (1), we propose a Dynamic Teacher Update mechanism, which dynamically *controls the update interval* of the teacher model.
- For (2), we propose a Training-Consistency based Resampling strategy, which adaptively *estimates the biased classes* and resampling.

厚德 求真 砺学 笃行

Research Motivations

Task Setting:

- Unsupervised domain adaptation (UDA) in semantic segmentation transfers the knowledge of the source domain to the target one to improve the adaptability of the segmentation model in the target domain.
- However, the need to access labeled source data makes UDA unable to handle adaptation scenarios involving privacy, property rights protection, and confidentiality.

• The setting of Unsupervised Model Adaptation (UMA) is proposed, aiming to adapt the source-trained model to the unlabeled target domain without using source domain data.

厚德 求真 砺学 笃行

02 **Research Motivations**

Problem:

- Existing UMA methods adopt offline self-training (OST) that iteratively updates the pseudo-labels to retrain the models but it requires expert intervention.
- Online self-training (ONST) avoids the drawback of OST by online co-evolving pseudo-labels, showing potential in unsupervised domain adaptation (UDA) with accessing source data.

Analyze:

- To apply ONST to UMA, we explore *two reasons* for the poor stability and adaptability of ONST in UMA:
- (1) the inopportune update of the teacher model;
- > (2) the bias towards minority classes in the source-trained model.

Method Proposed:

- ✓ For (1), we propose a Dynamic Teacher Update mechanism, which dynamically controls the update interval of the teacher model.
- ✓ For (2), we propose a Training-Consistency based Resampling strategy, which adaptively estimates the biased classes and resampling.

- In Fig.2 b and Fig.2 c, *m* denotes a fixed update interval;
- In Fig.2 d, \tilde{m} denotes a dynamic update interval.

Task Background:

- Symbol definition:
- > Let $D_{sd} = \{(x_{sd}, y_{sd})\}$ be the labeled source domain data, $D_{td} = \{x_{td}^n\}_{n=1}^N$ be the unlabeled target domain data;
- > The D_{sd} and D_{td} share K categories;
- > Let G and θ be the source-trained segmentation model and its parameters.
- Online Self-training (ONST) in UDA:
- Generally, in ONST, given a student model G_{stu} and an online updated teacher model G_{tea}. For G_{stu}, two losses are used for supervision:

on source domain $\rightarrow L_{sd} = H[x_{sd}, y_{sd}]$,

on target domain $\rightarrow L_{sd} = H \left[G_{stu}^{\theta_t} (W(x_{td})), G_{tea}^{\overline{\theta}_{t-m}} (S(x_{td})) \right]$

 G^{θ_t} is the model with parameters θ_t , m is the update interval of G_{tea} , t is the number of iterations.

> For G_{tea} , its parameters are the G_{stu} ' s momentum-updated version:

$$\overline{\theta}_{t} = (1 - \gamma)\theta_{t} + \gamma \overline{\theta}_{t-m},$$

 γ is the update weights.

厚德 求真 砺学 笃行

Dynamic Teacher Update (DTU):

- The gain rate of the student model over historical samples is positively correlated with stable co-evolution.
- > gain rate (GR): $\frac{1}{T} \sum_{t}^{T} \delta (V[G_{stu}^{\theta_{t-m}}(D_{his})], V[G_{stu}^{\theta_{t}}(D_{his})]), \delta(\cdot)$ is a comparison function, $V[\cdot]$ is a evaluation function.
- > IEGR: *V*[·] is *information entropy*; SNDGR: *V*[·] is *soft neighborhood density*.

So $V[\cdot]$ can measure whether the student model is evolved to dynamically control update interval m.

厚德 求真 砺学 笃行

٠

Training-Consistency based Resampling (TCR):

• Online average class score is calculated from the output probability of the teacher model:

$$\operatorname{ACS}_{k}^{t} = \frac{1}{hw} \sum_{i,j} p_{i,j,k}^{t},$$

 p^t is the probability map generated by the $G_{tea}^{\overline{\theta}_t}$. The low-confidence classes in ACS are considered to be minorities.

• We then use ACS to determine the sampling rate for *k*-th class:

 $SR_k = Normalize(1 - ACS_k)$. SR of the biased classes is <u>larger</u>!

• We regard the prediction consistency of as reliability to build reliable candidates for copy-paste resampling:

$$\operatorname{ReL}^{n} = \operatorname{IoU}\left[\aleph\left(G_{tea}^{\overline{\theta}_{t-l}}(x_{td}^{n}) \right), \aleph\left(G_{tea}^{\overline{\theta}_{t}}(x_{td}^{n}) \right) \right].$$

For each class k, we sort target images according to ReLk, and take the samples from the top C as the reliable candidates.

Experimental Results

M/A

04 Experimental Results

-

Comparative Experiment:

• We use pre-trained models from two simulation datasets GTA5 and SYNTHIA, and adapt them to real scenes Cityscapes

and BDD-100k datasets.

																							p	ew	ild	II	Ice	le	ht	E	e.	>	LSO	er		10	oik	9		
			alk	ing							u		u						0				SF	sid	Bu	Wa	fer	od	lig	sig	ve	sk;	bei	nid	cal	pm	mt	bik	mIoU	mIoU*
	ш	ad	dew	bliu	/all	nce	ole	ght	ug	ege.	rrai	S	erso	der	Ħ	uck	SI	ain	bika	ike		IAST (ECCV'20) [40]	× 81.9	41.5	83.3	17.7	4.6	32.3	30.9	28.8	83.4	85.0	65.5	30.8	86.5	38.2	33.1	52.7	49.8	57.0
	S	rc	Si	B	Н	fe	d	Ii	Si	N	te	sl	b	n.	3	H	piq	tt.	ш	pi	mloU	MetaCorr (CVPR'21) [14]	× 92.6	52.7	81.3	8.9	2.4	28.1	13.0	7.3	83.5	85.0	60.1	19.7	84.8	37.2	21.5	43.9	45.1	52.5
IAST (ECCV'2020) [40]	×	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5	ProDA (CVPR'2021) [59]	× 87.1	44	83.2	26.9	0.7	42	45.8	34.2	86.7	81.3	68.4	22.1	87.7	50	31.4	38.6	51.9	58.5
MetaCorr (CVPR'2021) [14]	X	92.8	58.1	86.2	39.7	33.1	36.3	42.0	38.6	85.5	37.8	87.'6	62.8	31.7	84.8	35.7	50.3	2.0	36.8	48.0	52.1	SAC (CVPR'2021) [1]	× 89.3	47.2	85.5	26.5	1.3	43	45.5	32	87.1	89.3	63.6	25.4	86.9	35.6	30.4	53	52.6	59.3
ProDA (CVPR'2021) [59]	×	91.5	52.4	82.9	42	35.7	40	<u>44.4</u>	43.3	87	43.8	79.5	66.5	31.4	86.7	41.1	52.5	0	45.4	53.8	53.7	CPST (CVPR'2022) [31]	× 87.3	44.4	83.8	25.0	0.4	42.9	47.5	32.4	86.5	83.3	69.6	29.1	89.4	52.1	42.6	54.1	54.4	61.7
SAC (CVPR'2021) [1]	X	90.4	53.9	86.6	42.4	27.3	45.1	48.5	42.7	87.4	40.1	86.1	67.5	29.7	88.5	49.1	54.6	9.8	26.6	45.3	53.8	Eaura anadal	52.2	1 226	62.2	60	0.2	10 2	72	12.7	70.7	757	52.5	10.2	75.0	24.6	8.0	10.2	22.1	29.1
CPST(CVPR'2022) [31]	X	91.7	52.9	83.6	43	32.3	43.7	51.3	42.8	85.4	37.6	81.1	69.5	30	88.1	44.1	59.9	24.9	47.2	48.4	55.7	Source model	1 50.2	25.0	02.2	0.0	0.2	20.5	1.5	12.7	19.1	13.1	32.5	10.2	75.0	24.0	0.9	10.5	35.1	36.1
, ,,,,,																					1	$= \text{URMDA}(\text{CVPR}^2021)[9]$	V 59.3	24.6	11	14	1.8	31.5	18.3	32	83.1	80.4	46.3	17.8	/6./	17	18.5	34.6	39.6	45
Source model		65.0	16.1	68.7	18.6	16.8	21.3	31.4	11.2	83.0	22.0	78.0	54.4	33.8	73.9	12.7	30.7	13.7	28.1	19.7	36.8	SFDA (CVPR'2021) [57]	67.8	31.9	77.1	8.3	1.1	35.9	21.2	26.7	79.8	79.4	58.8	27.3	80.4	25.3	19.5	37.4	42.4	48.7
URMDA (CVPR'2021) [9]	1	92.3	55.2	81.6	30.8	18.8	37.1	17.7	12.1	84.2	35.9	83.8	57.7	24.1	81.7	27.5	44.3	6.9	24.1	40.4	45.1	SDF (MM'2021) [57]	✓ 90.9	45.5	80.8	3.6	0.5	28.6	8.5	26.1	83.4	83.6	55.2	25	79.5	32.8	20.2	43.9	44.2	51.9
SFDA (CVPR'2021) [36]	1	91.7	52.7	82.2	28.7	20.3	36.5	30.6	23.6	81.7	35.6	84.8	59.5	22.6	83.4	29.6	32.4	11.8	23.8	39.6	45.8	HCL (NIPS'2021) [21]	80.9	34.9	76.7	6.6	0.2	36.1	20.1	28.2	79.1	83.1	55.6	25.6	78.8	32.7	24.1	32.7	43.5	50.2
SDF (MM'2021) [57]	1	95.2	40.6	85.2	30.6	26.1	35.8	34.7	32.8	85.3	41.7	79.5	61.0	28.2	86.5	41.2	45.3	15.6	33.1	40.0	49.4	DT-ST (Ours)	1 79.4	41.4	73.9	5.9	1.5	30.6	35.3	19.8	86.0	86.0	63.8	28.6	86.3	36.6	35.2	53.2	47.7	55.8
HCL (NIPS'2021) [21]	1	92.0	55.0	80.4	33.5	24.6	37.1	35.1	28.8	83.0	37.6	82.3	59.4	27.6	83.6	32.3	36.6	14.1	28.7	43.0	48.1	Source model + DG [32]	76.8	29.8	67.9	10.7	0.3	29.5	9.5	16.8	79.8	78.3	52.5	13.8	78.5	28.5	12.8	19.9	37.8	43.5
DT-ST (Ours)	1	90.3	47.8	84.3	38.8	22.7	32.4	41.8	41.2	85.8	42.5	87.8	62.6	37.0	82.5	25.8	32.0	29.8	48.0	56.9	52.1	ProDA [†] (CVPR'2021) [59]	1 79.9	35.7	75.5	20.7	0	39.6	36.5	31.5	84.2	80.6	64.2	9.6	85.3	40.9	24.9	35.8	46.6	52.7
Source model + DG [32]		80.2	30.2	79.6	30.7	20.3	31.9	36.1	18.6	80.6	23.9	75.2	63.0	36.2	84.8	31.2	36.1	4.4	31.2	28.0	43.3	SAC [†] (CVPR'2021) [1]	/ 84.7	39.6	80.9	16.3	0.2	38.4	40.9	27.4	82.5	84.7	59.1	16.6	82.3	31	20.8	36.1	46.3	52.8
ProDA [†] (CVPR'2021) [59]	1	85.6	45.4	76.5	40.1	31.9	38.9	36.4	47.4	85.8	45.7	80.1	63.6	0	85.6	33.7	51.2	0	37.6	52.3	49.4	CPST [†] (CVPR'2022) [31]	V 80.9	28.7	81	20.4	1.2	38.6	36.3	31.4	85.3	74.4	64.2	12.6	87.2	31.9	16.3	42.8	45.8	51.8
SAC [†] (CVPR'2021) [1]	1	89.1	52.7	82.1	40.3	26.7	40.7	44.1	40.1	81.6	40.1	81.6	67.4	26.1	85.1	44.5	48.8	3.8	26.4	43.1	50.8	HCL (NIPS'2021) [21]	√ 86.7	38.1	82.7	10.0	0.6	30.3	25.4	29.7	82.8	85.9	61.9	24.8	84.5	38.9	22.6	37.9	46.4	54.0
CPST [†] (CVPR'2022) [31]	1	86.7	38.6	82.2	39.8	32.1	40.8	41.5	43.2	85.6	42.7	73.6	65.5	22.1	87.3	27.1	41.1	0	37.6	49.5	49.3	DT-ST (Ours)	1 88.9	45.8	83.3	13.7	0.8	32.7	31.6	20.8	85.7	82.5	64.4	27.8	88.1	50.9	37.6	57.3	50.7	58.8
HCL (NIPS'2021) [21]	1	92.6	54.6	82.8	33.2	26.2	39.8	38.1	31.9	84.5	38.6	85.3	61.3	30.2	85.4	33.1	41.6	14.4	27.3	44.0	49.7	like and the second sec	T	- 2		•				c	CVA			C'+			1.1			-
DT-ST (Ours)	1	93.5	57.6	84.7	36.5	25.2	33.4	44.7	36.7	86.8	42.8	81.3	62.3	37.2	88.1	48.7	50.6	35.5	48.3	59.1	55.4		labl	e 2. I	⊧xpe	rime	enta	res	uits	TOP	SYN	IIHI	$A \rightarrow$	CIT	ysca	pes.	•			

Table 1. Experimental results for GTA5 \rightarrow Cityscapes.

-			Compoun	d	Open	A	vg
Source $\text{GTA} \rightarrow$	SF	Rainy	Snowy	Cloudy	Overcast	C	C+O
Source Only		19.7	18.4	20.5	22.5	19.7	21.0
CBST [63]	X	21.3	20.6	23.9	24.7	22.2	22.6
IBN-Net [42]	×	20.6	21.9	26.1	25.5	22.8	23.5
PyCDA [34]	×	21.7	22.3	25.9	25.4	23.3	23.8
OCDA [37]	×	22.0	22.9	27.0	27.9	24.5	25.0
MOCDA [12]	×	24.4	27.5	30.1	31.4	27.7	29.4
HCL [21]	1	22.8	25.8	28.6	27.7	25.9	26.2
DT-ST (Ours)	1	26.7	28.1	32.1	32.5	30.1	31.3

Table 3. Experimental results for GTA5 \rightarrow BDD-100k.

雪行

厚傳

alk ing

Figure 4. Visualization of output from the teacher model for different iterations.

Ablation Studies and Sensitivity Analysis:

source-trained	Base ST	DTU-E	DTU-SND	TCR-Prob	TCR	mIoU	gain
					3	36.8	
	\checkmark					46.2	+9.4
	\checkmark	\checkmark				47.2	+10.4
original	~		\checkmark			47.8	+11.0
	\checkmark			\checkmark		49.3	+12.5
	~				\checkmark	50.6	+13.8
	\checkmark		\checkmark	\checkmark		50.2	+11.0
	\checkmark		\checkmark		\checkmark	52.3	+15.5
					0	43.3	15
	~					50.7	+7.4
	\checkmark	\checkmark				51.3	+8.0
DG [32]	~		\checkmark			52.7	+9.4
	~			\checkmark		52.8	+9.5
	\checkmark				\checkmark	54.4	+11.1
	\checkmark		\checkmark	\checkmark		53.8	+10.5
	\checkmark		\checkmark		\checkmark	55.4	+12.1

Table 4. We report mIoU scores (%) (val) using two sourcetrained models on GTA5 \rightarrow Cityscapes task Under UMA setting. TCR-*Prob* denotes a strong copy-paste baseline using softmax entropy as reliability metrics.

$C\downarrow$	$I \rightarrow$	2000	3000	4000	5000
30		54.1	54.2	54.3	54.1
40		54.3	54.5	54.6	54.8
50		54.8	55.2	55.5	55.1
60		54.8	55.1	55.3	55.2

唐博

Table 5. The mIoU (%) score on GTA5 \rightarrow Cityscapes (val) with varying C% and I using domain generalization model.

M	30	50	70	90	110
$GTA5 \rightarrow Cityscapes$	55.0	55.4	55.3	55.1	54.9
$SYNTHIA \rightarrow Cityscapes$	50.4	50.7	50.7	50.5	50.1

實行

Table 6. The mIoUscores (%) with varyingM on different tasks.

Figure 5. The mIoU score curve (val) of adding DTU and TCR.

Figure 6. Visualization of the adaptation results from single-domain to mixed-domain, including rainy, snowy and cloudy scenes (i.e. GTA5 \rightarrow BDD-100K).

Different pre-trained models

厚德 求真 砺学 笃行

Thanks!

QUESTIONS & ANSWERS

葡 西安電子科技大學