A Strong Baseline for Generalized Few-Shot Semantic Segmentation

WED-AM-289

Sina Hajimiri

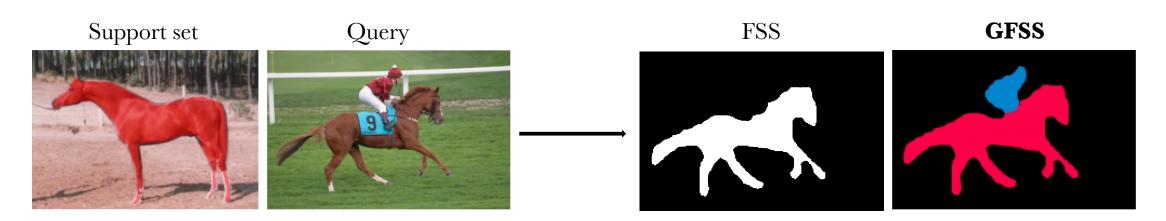
Malik Boudiaf

Ismail Ben Ayed

ÉTS Montreal, Canada

Few-shot segmentation (FSS)

$$\begin{array}{l} \mathcal{Y}_{\text{base}} \cap \mathcal{Y}_{\text{novel}} = \varnothing \\ \text{Training: } \mathcal{Y}_{\text{base}} = \{ \text{car, cat, person} \} \\ \text{Testing: horse} \sim \mathcal{Y}_{\text{novel}} \end{array}$$



Standard FSS only segments the novel class, disregarding the previously learned base classes

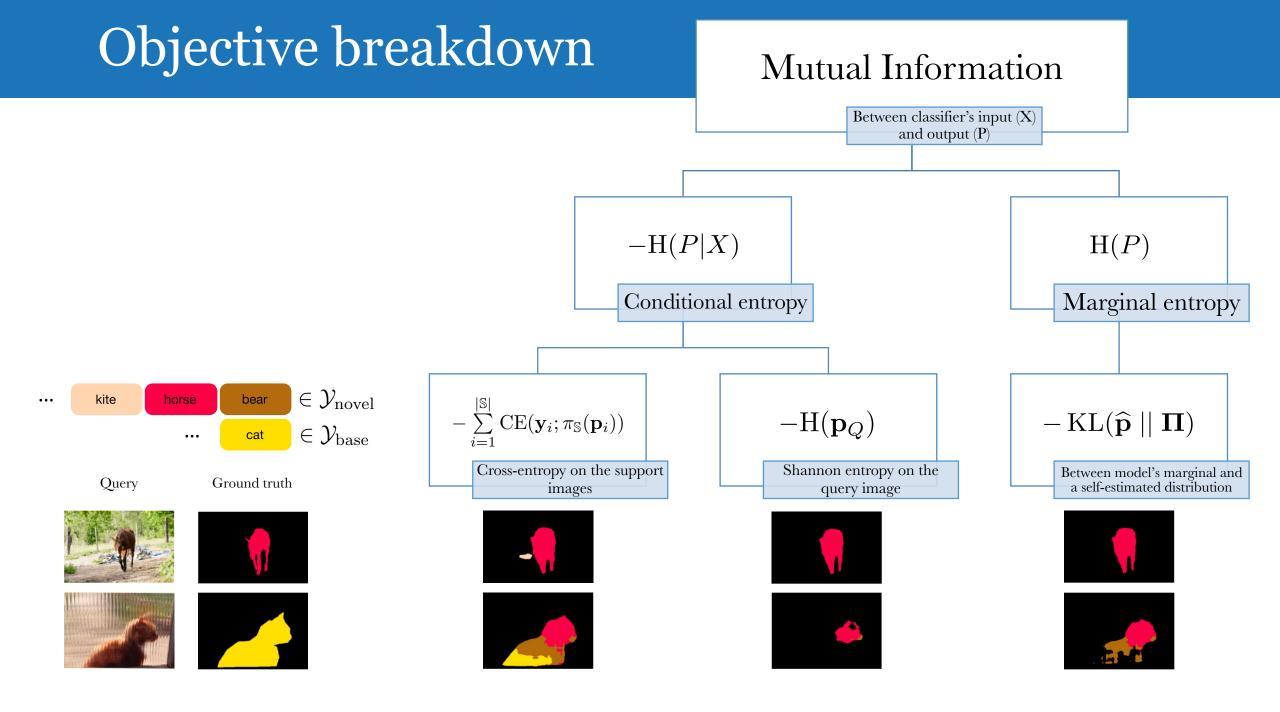
- Prevent knowledge loss
- No knowledge of novel classes beforehand
- No need for base classes' labels in the support set
- Novel classes performance

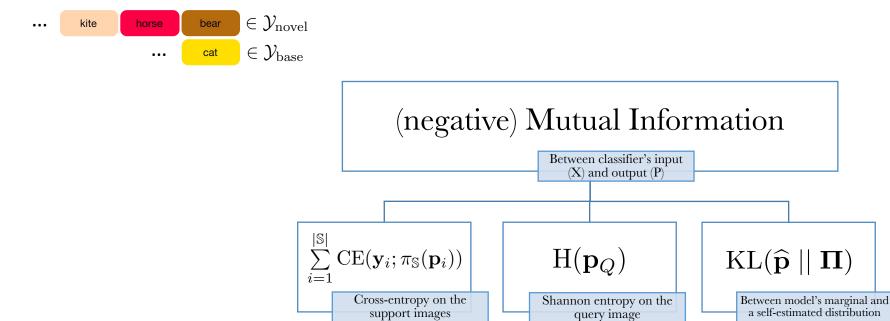
Contributions

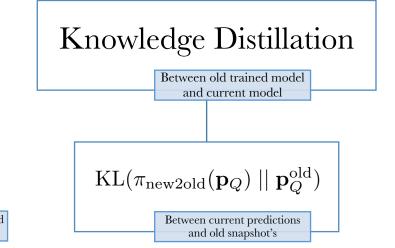
Presenting Distilled Information Maximization (DIaM)

Consistent SOTA on PASCAL-5ⁱ and COCO-20ⁱ

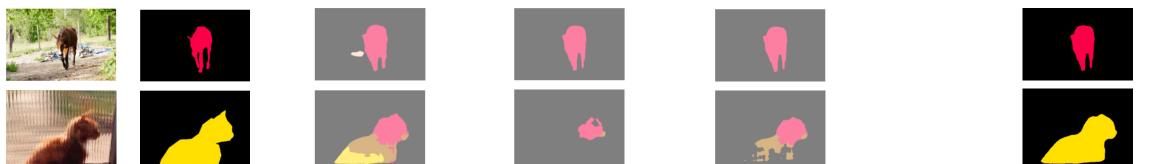
Outperforming current SOTA in a more challenging benchmark







Ground truth



	PASCAL- 5^i						
	1-Shot				5-Shot		
Method	Base	Novel	Mean	Base	Novel	Mean	
CAPL (Tian et al., 2022) BAM (Lang et al., 2022) DIaM (Ours)	64.80 71.60 70.89	17.46 27.49 35.11	41.13 49.55 53.00	65.43 71.60 70.85	24.43 28.96 55.31	44.93 50.28 63.08	

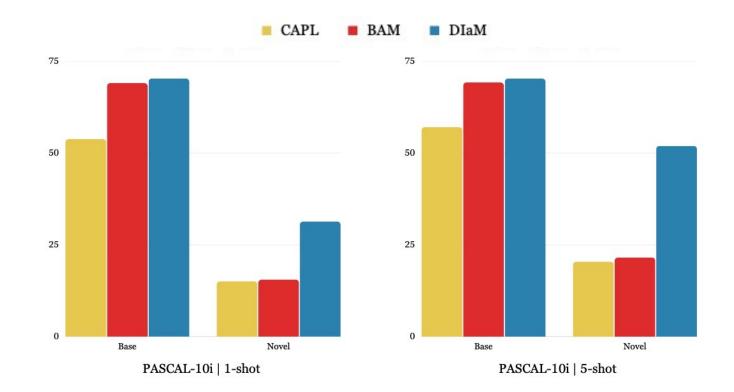
 $\mathbf{COCO-}20^{i}$

		Base	Novel	Mean	Base	Novel	Mean
CAPL	(Tian et al., 2022)	43.21	7.21	25.21	43.71	11.00	27.36
BAM	(Lang et al., 2022)	49.84	14.16	32.00	49.85	16.63	33.24
DIaM	(Ours)	48.28	17.22	32.75	48.37	28.73	38.55

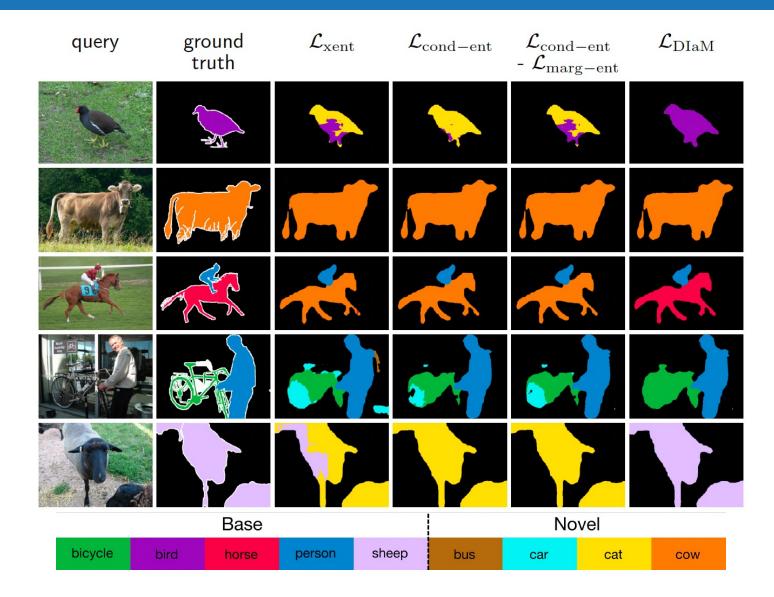
- Keep high performance on base classes
- Outperform on novel classes
- Better leverage information as more shots are given

Experiments (cont.)

• Equal number of base and novel classes



Visual examples



Conclusion

Main takeaways

- Standard FSS can be made more practical \rightarrow GFSS
- Unrealistic assumptions in prior works (e.g., knowing novel classes beforehand)
- A baseline to eliminate these assumptions

Future directions

- Better estimation of Π
- Avoiding ambiguity of the *background* class

Learn more

- Camera-ready: <u>https://arxiv.org/abs/2211.14126</u>
- Code: <u>https://github.com/sinahmr/DIaM</u>