Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert

Jiadong Wang, Xinyuan Qian, Malu Zhang, Robby T. Tan, Haizhou Li Paper ID: 10744 Session: WED-PM-220

Introduction

 Visual quality and lip-speech sync are widely concerned aspects of talking face generation.

Introduction

 Reading intelligibility indicates how much text content can be interpreted from lip movements.

Introduction

Stimuli		Human Responses (count)						
Auditory	visual	Auditory	visual	rused	Comb.	Other		
ba-ba	ga-ga	2	0	98	0	0		
ga-ga	ba-ba	11	31	0	54	4		
pa-pa	ka-ka	6	7	81	0	6		
ka-ka	pa-pa	13	37	0	44	6		
	P. P.							

 Visual quality and lip-speech synchronization do not explicitly reflect intelligibility.

Overview of lip-reading expert

Self-supervised Pre-training

Supervised Fine-tuning

- Self-supervised Pre-training uses the clustering class of hand-crafted audio feature or learned audio-visual feature as **pseudo labels**.
- Supervised Finetuning constructs a lip-reading experts with the pre-trained transformer encoder and a decoder and trains it with text annotation.

Audio encoder

- Local audio embedding crop a 0.2s audio segment whose centre is temporally aligned with an input image.
- Global audio embedding extract audio context features from an entire audio and then crop a feature which is temporally aligned with an input image.

Architecture

- Synthesis of talking face given a triplet of a pose image, an identity image and a speech.
- Penalize incorrect lip movements in synthesized image via a lip reading expert.
- Contrastive learning between audio embeddings and output features of the lip reading expert's encoder.

Contribution

- We tackle the **reading intelligibility** problem of speech-driven talking face generation by **leveraging a lip-reading expert**.
- To **enhance lip-speech synchronization**, we propose a novel crossmodal **contrastive learning** strategy, **assisted by a lip-reading expert**.
- We employ a transformer encoder trained synchronically with the lipreading expert to consider global temporal dependency across the entire audio utterance.
- We propose a new strategy to evaluate reading intelligibility and make the benchmark code publicly available.
- Extensive experiments show that our proposal achieve SOTA reading intelligibility and lip-speech synchronization.

Experiments

- Training dataset
 - LRS2 train set (29 hours)

Evaluation dataset

- LRS2 test set: continuous audio-visual speech recognition
- LRW test set: audio-visual word classification

Metrics

- Visual quality:
 - SSIM
 - PSNR
- Lip-speech synchronization:
 - LSE-C
 - LSE-D
- Reading intelligibility:
 - Word Error Rate on LRS2
 - Accuracy on LRW

Quantitative Result

Method	LRW				LRS2				
	PSNR ↑	SSIM ↑	LSE-C↑	ACC (%) ↑	PSNR ↑	SSIM \uparrow	LSE-C↑	WER ₁ (%)	$\operatorname{WER}_2\downarrow$
Ground Truth	N.A.	1.000	6.88	88.51	N.A.	1.000	8.25	23.82	40.9
ATVGnet	30.71	0.791	5.64	18.10	30.42	0.751	5.05	113.69	91.8
Wav2Lip	31.52	0.874	7.18	59.98	31.36	0.854	8.40	82.06	73.9
Faceformer	29.19	0.856	5.58	53.43	29.47	0.840	6.42	97.64	79.0
PC-AVS*	30.44	0.778	6.42	-	29.89	0.747	6.73	-	-
SyncTalkFace*	33.13	0.893	6.62	-	32.59	0.876	7.93	-	-
$\overline{\text{TalkLip}}(\overline{l})$	31.24	0.867	6.44	79.78	31.38	0.849	7.58	45.74	55.7
TalkLip $(l + c)$	31.52	0.867	6.51	83.17	31.14	0.850	7.76	38.00	49.2
TalkLip (g)	30.78	0.871	7.01	86.57	30.86	0.854	8.38	25.31	36.5
TalkLip $(g + c)$	31.18	0.866	7.28	87.81	31.19	0.850	8.53	23.43	35.1
$\bar{\mathbf{B}}$ ase w.o. $\bar{\mathcal{L}}_{lip}$	31.22	0.865	6.01	48.58	31.08	0.852	7.09	103.57	82.2
Base w.o. $\mathcal{L}_{lip,gan}$	30.64	0.864	5.03	30.80	30.70	0.851	5.93	116.26	89.3

- g and l: global and local audio embedding
- c: Contrastive learning
- **Base** denotes **Talklip** (*l*)
- * indicates that results are scratched from another paper as these methods do not opensource their training scripts.

11

Qualitative Result

Ablation on Audio Encoder

a) TalkLip (l+c)

b) TalkLip (g+c)

c) Ground Truth

Ablation on Contrastive Learning

a) TalkLip (*l*)

b) TalkLip (l+c)

c) Ground Truth

Audio Embedding Visualization

Talklip (l)

Talklip (l + c)

Talklip (g + c)

Demo

What's the Best Thing about the Royal Highland show

Conclusion

- A lip reading expert is efficient to improve reading intelligibility.
- The contrastive learning can boost not only lip-speech synchronization but also reading intelligibility.
- The transformer encoder can both improve reading intelligibility and lip-speech synchronization.
- Extensive experiments prove that our proposal achieve SOTA reading intelligibility and lip-speech synchronization.