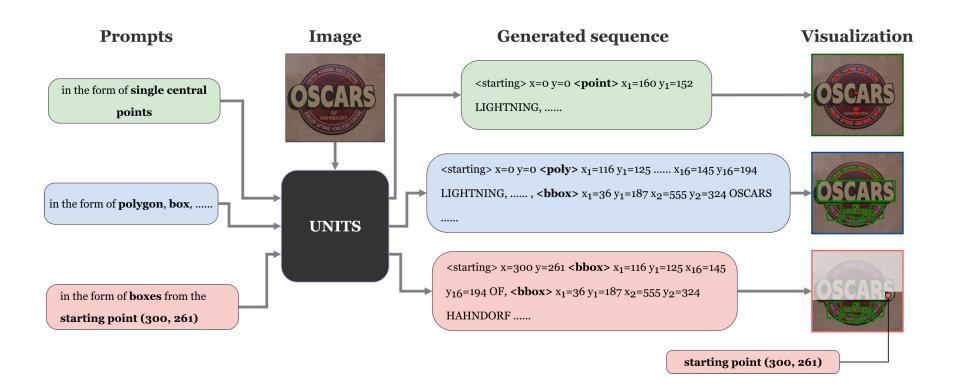
WED-PM-273

Towards Unified Scene Text Spotting based on Sequence Generation

Taeho Kil^{1*} Seonghyeon Kim^{2†} Sukmin Seo¹ Yoonsik Kim¹ Daehee Kim¹


¹Naver Cloud ²Kakao Brain

{taeho.kil, sukmin.seo, yoonsik.kim90, daehee.k}@navercorp.com, matt.mldev@kakaobrain.com

•

Overview

• Tackle the text spotting task using a sequence generation method

Problem statement

• Needs to cover all detection formats instead of relying on only one

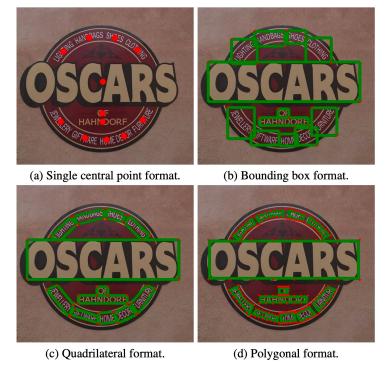
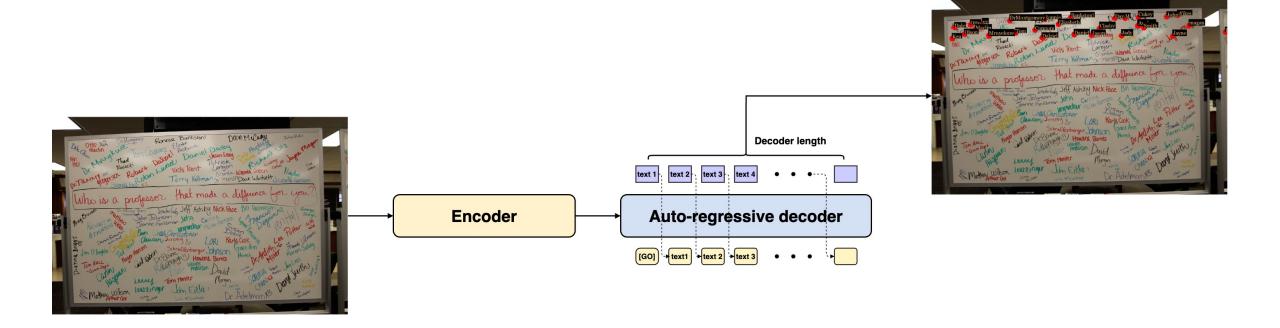
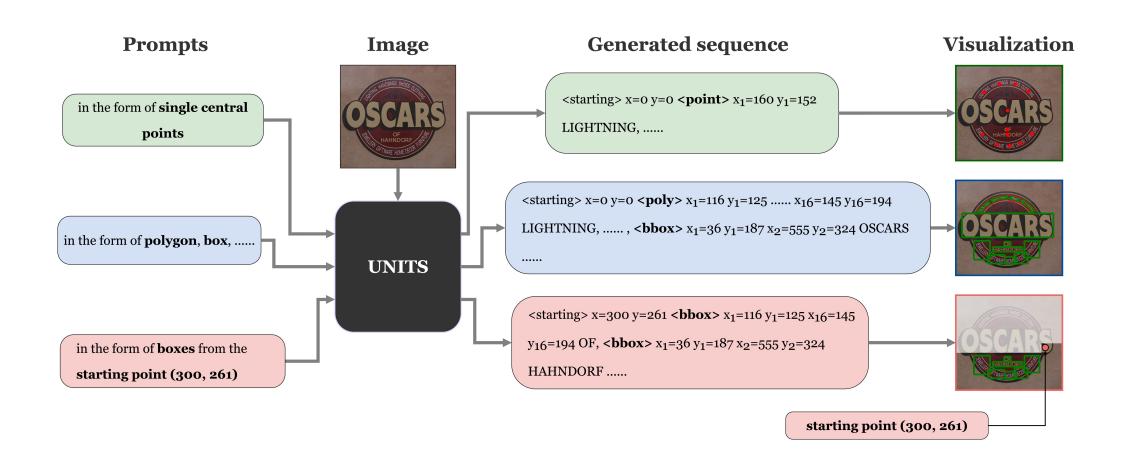
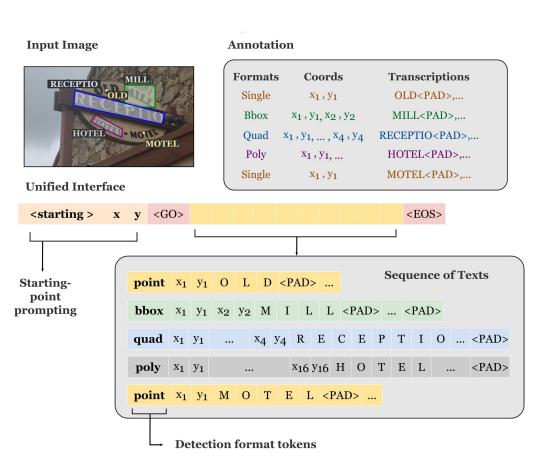



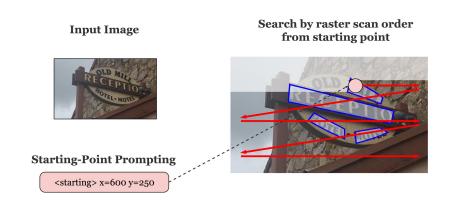
Figure 1. Various types of detection formats. The green line represents the boundary shape of the detection format, and the red dot represents the points used for the corresponding format.

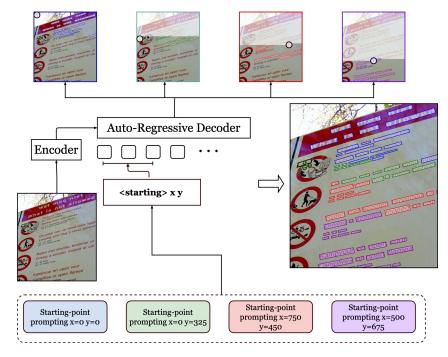
Problem statement


• The maximum length of the decoder limits the number of texts that can be extracted


Contribution

- Propose a novel sequence generation-based scene text spotting method
- Extract arbitrary-shaped text areas by unifying various detection formats
- Extract more texts than the decoder length allows using the starting-point prompt


Proposed method


Unified interface for text spotting

Detection format token enables a single model to handle multiple detection foramts

Read texts from a specific location in raster order by using starting-point prompt

Comparisons

Method	Detection			End-to-End			
	Recall	Precision	F-measure	Strong	Weak	Generic	None
CRAFTS [3]	85.3	89.0	87.1	83.1	82.1	74.9	-
MaskTextSpotter v3 [18]	-	-	-	83.3	78.1	74.2	-
ABCNet v2 [23]	86.0	90.4	88.1	82.7	78.5	73.0	-
MANGO [29]	-	-	-	85.4	80.1	73.9	-
DEER [15]	86.2	<u>93.7</u>	89.8	82.7	79.1	75.6	71.7
SwinTextSpotter [12]	-	_	_	83.9	77.3	70.5	-
TESTR [39]	89.7	90.3	90.0	85.2	79.4	73.6	65.3
TTS [16]	-	-	_	85.2	81.7	77.4	-
GLASS [31]	-	-	-	84.7	80.1	76.3	-
UNITS _{Shared}	90.5	93.6	92.0	88.4	83.9	<u>79.7</u>	<u>78.5</u>
UNITS	91.0	94.0	92.5	89.0	84.1	80.3	78.7

Table 1. Experiment results on ICDAR 2015. "Strong", "Weak", "Generic", and "None" represent recognition with each lexicon respectively.

Method	Detection	End-to-End		
Wedied	F-measure	None	Full	
CRAFTS [3]	87.4	78.7	_	
MaskTextSpotter v3 [18]	-	71.2	78.4	
ABCNet v2 [23]	87.0	70.4	78.1	
MANGO [29]	-	72.9	83.6	
DEER [15]	85.7	74.8	83.3	
SwinTextSpotter [12]	88.0	74.3	84.1	
TESTR [39]	86.9	73.3	83.9	
TTS [16]	-	75.6	84.4	
GLASS [31]	-	76.6	83.0	
UNITS _{Shared}	88.4	77.3	85.0	
UNITS	89.8	78.7	86.0	

Table 2. Experiment results on Total-Text. "Full" and "None" represent recognition with each lexicon respectively.

Ablations

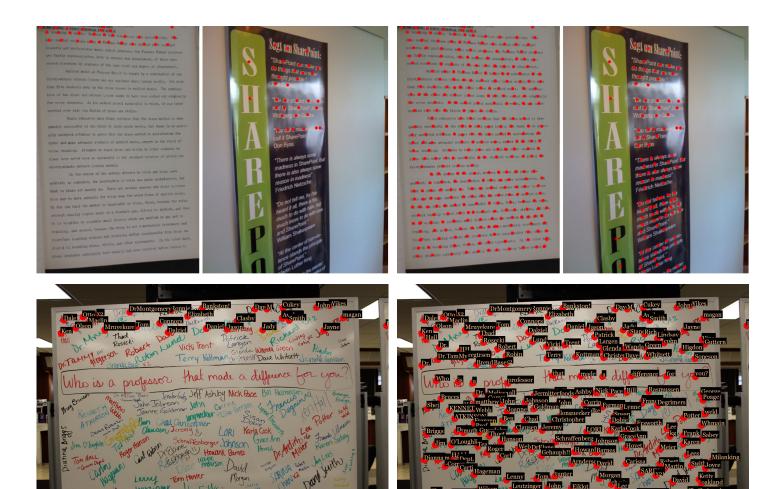
Method	End-to-End			
TVICTION .	Strong	Weak	Generic	
SPTS [28]	77.5	70.2	65.8	
UNITS _{Shared} – Point	89.9	84.1	79.3	
$UNITS_{Shared} - Box$	90.1	84.5	79.3	
UNITS _{Shared} – Quad	89.9	84.5	79.5	
UNITS _{Shared} – Polygon	89.4	84.0	79.0	

Table 3. The end-to-end recognition performance evaluated by the point-based metric [28] on ICDAR 2015.

(a) single point

(b) bbox

(c) quad format

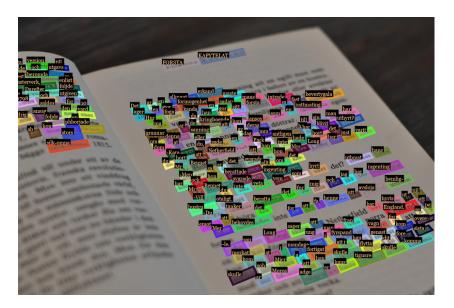

(d) polygon

The proposed method can extract text in several detection formats with a single model

Ablations

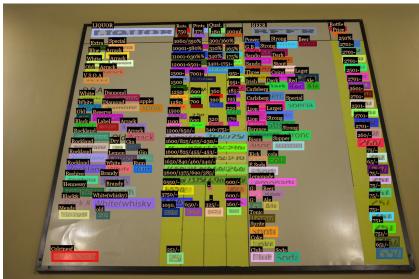
Starting-Point Prompt	End-to-End			
Starting 1 omt 1 fompt	Precision	Recall	F-measure	
-	78.4	30.6	44.0	
\checkmark	80.2	54.2	64.7	

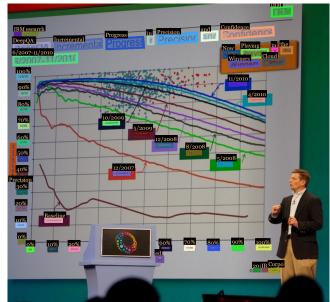
Table 5. Ablation study of the starting-point prompting on TextOCR. The starting-point prompting enables UNITS to extract a large number of text instances even with a limited decoder length.



w/o starting-point prompt

w/ starting-point prompt


The proposed method overcomes limitations of existing methods by using the starting-point prompt


Qualitative results

