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Quick View - Motivation
• Traditional Encoder-Decoder architecture for point cloud completion

(e.g., FoldingNet [Yang et al. 2018], PCN [Wang et al. 2018], TopNet [Tchapmi et al. 2019],
SnowFlakeNet [Xiang et al. 2021]) learns sparse embedding distribution, which
leads to worse generalization results during testing.
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• Different embedding distributions lead to optimization conflicts
between point cloud completion and other semantic tasks.



Quick View – Our Solution
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üPropose a hyperspherical module, which could be inserted into any 
existing Encoder-Decoder architecture for point cloud completion.

üConsistently improve the point cloud completion result in both 
single-task and multi-task learning.

üTheoretically analyze the effects of hyperspherical embedding and 
empirically conduct experiments on several state-of-the-art baselines 
and datasets.



Hyperspherical Module
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• a multi-layer perceptron (MLP) layer
• a normalization layer



Effects of Hyperspherical Embedding

Proposition 1: 
The gradient of the embedding before normalization is orthogonal to itself.
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The gradient to the embedding: Orthogonality proof:

L: Loss function at optimization
f: Embedding before normalization

-



Effects of Hyperspherical Embedding

Proposition 2: 
For standard stochastic gradient descent (SGD), the magnitude of the embedding 
before normalization increases at each update during training.
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Norm distribution of embeddings

-



Effects of Hyperspherical Embedding

Proposition 3: 
The magnitude of the gradient is inversely proportional to the norm of the embedding.
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Multi-task learning on MVP dataset with different learning rates

Wider range of learning rates:



Effects of Hyperspherical Embedding

Proposition 4: 
During optimization, the increased norm of     requires a poorly conditioned weight 
matrix.
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W: Weight matrix
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Distributions of singular values

• Large singular values become larger, and small singular values become smaller.



Effects of Hyperspherical Embedding
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More compact distribution:
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Distributions of cosine similarity in single-task
Gradient conflicts between tasks in multitask
learning during training

Proposition 4: 
During optimization, the increased norm of     requires a poorly conditioned weight 
matrix.



Single-task Completion
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Quantitative Results on MVP dataset (Single-task)

• Consistent improvement for all baseline models with our hyperspherical module.



Single-task Completion
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Qualitative results on MVP dataset

• With our hyperspherical module, the completion result has less noise.



Multi-task Learning
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Quantitative results on MVP dataset (Multi-task)

• Consistent improvement on completion task over all multi-task methods.
• Better completion result in multi-task learning than in single-task setting.



Real World Scenarios
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• The proposed hyperspherical module bring consistent improvement over
object detection, pose estimation and point cloud completion.

Inputs Ground Truth Folding Folding Hyper

Qualitative results on GraspNet dataset

Quantitative results on GraspNet dataset



Visualize the Embedding Space
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Point cloud interpolation samples in the embedding space

• The generated point clouds with hyperspherical embeddings have more clear
clues from source to target shapes.



Conclusion
• We propose a hyperspherical module that outputs hyperspherical

embeddings, which improves the performance of point cloud
completion.
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• We theoretically investigate the effects of hyperspherical embeddings
and demonstrate that the point cloud completion benefits from them
by stable training and learning a compact embedding distribution.

• We analyze training point cloud completion with other tasks and
observe conflicts between them, which can be reconciled by the
hyperspherical embedding.


