Regularization of polynomial networks for image recognition

Grigorios G Chrysos, Bohan Wang, Jiankang Deng, Volkan Cevher

École Polytechnique Fédérale de Lausanne (EPFL)

Poster #359 (Wednesday afternoon)

Background: Image generation with Polynomial Neural Networks

G Chrysos, S Moschoglou, G Bouritsas, Y Panagakis, J Deng, and S Zafeiriou. 'II-nets: Deep Polynomial Neural Networks.' In CVPR, 2020.

Background: Large-scale recognition with Polynomial Neural Networks

Task	Dataset	Model	Metric Name	Metric Value	Global Rank
Face Recognition	AgeDB-30	Prodpoly	Accuracy	0.98467	#2
Face Recognition	CALFW	Prodpoly	Accuracy	0.96233	#1
Face Recognition	CFP-FF	Prodpoly	Accuracy	99.886	#1
Face Recognition	CFP-FP	Prodpoly	Accuracy	0.98986	#1

https://paperswithcode.com/paper/deep-polynomial-neural-networks (Jan. 2023)

Rank	Model	Accuracy 🕈	Paper	Code	Result	Year
1	Prodpoly	98.95%	Deep Polynomial Neural Networks	0	-9	2020
2	ElasticFace-Arc	98.81%	ElasticFace: Elastic Margin Loss for Deep Face Recognition	0	-9	2021
3	ArcFace + MS1MV2 + R100 + R	98.48%	ArcFace: Additive Angular Margin Loss for Deep Face Recognition	0	÷Ð	2018
4	DiscFace	97.44%	DiscFace: Minimum Discrepancy Learning for Deep Face Recognition		Ð	2020
5	Dynamic AdaCos	97.41%	AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations	0	÷	2019

https://paperswithcode.com/sota/face-verification-on-megaface

G Chrysos, S Moschoglou, G Bouritsas, J Deng, Y Panagakis, and S Zafeiriou. 'Deep Polynomial Neural Networks.' In T-PAMI, 2021.

Background: Extrapolation with Polynomial Neural Networks

Y Wu, Z Zhu, F Liu, G Chrysos, V Cevher, 'Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study'. In NeurIPS, 2022.

Motivation

Figure: The proposed networks (*R*-PolyNets, *D*-PolyNets) reach the performance of powerful neural networks.

The proposed \mathcal{R} -PolyNets

Figure: Fourth-degree expansion with respect to the input z. 'Mul' abbreviates the elementwise product.

\mathcal{R} -PolyNets for N degree polynomial expansions

$$x_{n} = \left(\Phi H_{[n]}^{T} z \right) * \left(\Psi J_{[n]}^{T} x_{n-1} + K_{[n]} k_{[n]} \right) + x_{n-1} , \qquad (1)$$

$$\text{Linear mapping (of the input z)}$$

$$\text{Elementwise product}$$

$$\text{Linear mapping (of the intermediate term x_{n-1})}$$

$$\text{Skip connection}$$

$$\text{for } n = 2, \dots, N \text{ with } x_{1} = z \text{ and } x = Bx_{N} + \theta. \text{ The parameters } \left\{ H_{[n]}, J_{[n]}, K_{[n]}, k_{[n]} \right\}_{n=2}^{N} \text{ and } B, \theta \text{ are learnable.}$$

Model details

Critical components utilized in *R*-PolyNets:

- Initialization scheme.
- Normalization scheme.
- Additional data augmentations and regularization.

The proposed D-PolyNets

Figure: (Left) The complete architecture of *D*-PolyNets. (Right) A single block.

Experimental validation

Method	Cifar-10	Cifar-100	STL-10	Tiny ImageNet	Oxford Flowers
ResNet18	0.944	0.760	0.741	0.615	0.877
Hybrid II-Nets	0.944	0.765	0.775	0.611	0.889
PDC	0.909	0.689	0.681	0.452	0.885
$\Pi ext{-Nets}$	0.907	0.677	0.563	0.502	0.826
\mathcal{R} -PolyNets (ours)	0.945	0.769	0.828	0.615	0.949
\mathcal{D} -PolyNets (ours)	0.947	0.767	0.834	0.618	0.941
\mathcal{R} -PDC (ours)	0.947	0.757	0.833	0.560	0.947
\mathcal{D} -PDC (ours)	0.949	0.762	0.855	0.569	0.945

Experimental validation on ImageNet

Model	# par (M)	Top-1 Acc. (%)	Top-5 Acc. (%)
ResNet18	11.69	69.758	89.078
ResNet18 without activations	11.69	20.536	39.986
Hybrid Π -Nets	11.96	70.740	89.548
Π-Nets	12.38	65.280	85.958
\mathcal{R} -PolyNets (ours)	12.38	70.228	89.390
\mathcal{D} -PolyNets (ours)	11.36	70.090	89.424

Conclusion and future work

- We introduce R-PolyNets and D-PolyNets, which represent polynomial networks without elementwise activation functions.
- We exhibit how the proposed networks can be trained to obtain performance comparable to powerful neural networks.

Conclusion and future work

- We introduce R-PolyNets and D-PolyNets, which represent polynomial networks without elementwise activation functions.
- We exhibit how the proposed networks can be trained to obtain performance comparable to powerful neural networks.
- As a future step, we believe a more thorough understanding of the trainability of the models is essential.
- ▶ A deeper understanding of the inductive bias will enable the design of improved polynomial networks.
- Scaling polynomial networks to even higher degrees to outperform the largest transformers is still an open task.

Come to our poster #359 (Wednesday afternoon).

- 1. Code: O https://github.com/grigorisg9gr/regularized_polynomials
- 2. Contact us: grigorios.chrysos [at] epfl.ch.

