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Abstract

Deep neural networks have achieved unprecedented suc-
cess on diverse vision tasks. However, they are vulnerable to
adversarial noise that is imperceptible to humans. This phe-
nomenon negatively affects their deployment in real-world
scenarios, especially security-related ones. To evaluate the
robustness of a target model in practice, transfer-based at-
tacks craft adversarial samples with a local model and have
attracted increasing attention from researchers due to their
high efficiency. The state-of-the-art transfer-based attacks
are generally based on data augmentation, which typically
augments multiple training images from a linear path when
learning adversarial samples. However, such methods se-
lected the image augmentation path heuristically and may
augment images that are semantics-inconsistent with the
target images, which harms the transferability of the gen-
erated adversarial samples. To overcome the pitfall, we
propose the Path-Augmented Method (PAM). Specifically,
PAM first constructs a candidate augmentation path pool.
It then settles the employed augmentation paths during ad-
versarial sample generation with greedy search. Further-
more, to avoid augmenting semantics-inconsistent images,
we train a Semantics Predictor (SP) to constrain the length
of the augmentation path. Extensive experiments confirm
that PAM can achieve an improvement of over 3.7% on av-
erage compared with the state-of-the-art baselines in terms
of the attack success rates.

1. Introduction

Deep neural networks (DNNs) appear to be the state-
of-the-art solutions for a wide variety of vision tasks [18,
23]. However, DNNs are vulnerable to adversarial sam-
ples [9], which are elaborately designed by adding human-
imperceptible noise to the clean image to mislead DNNs
into wrong predictions. The existence of adversarial sam-
ples causes negative effects on security-sensitive DNN-
based applications, such as self-driving and face recogni-

Figure 1. Illustration of how SIM and our PAM augment images
(red dots) during the generation of adversarial samples. SIM only
considers one linear path from the target image X to a baseline
image X ′. Besides, SIM may augment images that are semantics-
inconsistent with the target image. In contrast, our PAM augments
images along multiple augmentation paths. We also constrain the
length of the path to avoid augmenting images that are semantics-
inconsistent with the target one.

tion [22]. Therefore, it is necessary to enhance attack al-
gorithms to better identify the DNN model’s vulnerability,
which is the first step to improve their robustness against
adversarial samples [9].

There are generally two kinds of attacks in the litera-
ture [7]. One is the white-box attacks, which consider the
white-box setting where attackers can access the architec-
tures and parameters of the victim models. The other is
the black-box attacks, which focus on the black-box situa-
tion where attackers fail to get access to the specifics of the
victim models [8, 30]. Black-box attacks are more applica-
ble than the white-box counterparts to real-world systems.
There are two basic black-box attack methodologies: the
query-based [1, 2] and the transfer-based attacks [29, 31].
Query-based attacks interact with the victim model to gen-
erate adversarial samples, but they may incur excessive
queries. In contrast, transfer-based attacks craft adversar-
ial samples with a local source model and do not need to
query the victim model. Therefore, transfer-based attacks
have attracted more attention recently because of their high
efficiency [8, 30].

1
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However, transfer-based attacks generally craft adversar-
ial samples by employing white-box strategies like the Fast
Gradient Sign Method (FGSM) [9] to attack a local model,
which often leads to limited transferability due to overfit-
ting to the employed local model. Most existing solutions
address the overfitting issue from the perspective of opti-
mization and generalization, which regards the local model
and the target image as the training data of the adversar-
ial sample. Therefore, the transferability of the learned
adversarial sample corresponds to its generalization abil-
ity across attacking different models [17]. Such method-
ologies to improve adversarial transferability can be cate-
gorized into two groups. One is the optimizer-based ap-
proaches [7,17,27], which adopt more advanced optimizers
to escape from poor local optima during the generation of
adversarial samples. The other is the augmentation-based
methods [8, 17, 28, 33], which resort to data augmentation
and exploit multiple training images to learn a more trans-
ferable adversarial sample.

Current state-of-the-art augmentation-based attacks gen-
erally apply a heuristics-based augmentation method. For
example, the Scale-Invariant attack Method (SIM) [17] aug-
ments multiple scale copies of the target image, while Ad-
mix [28] augments multiple scale copies of the mixtures of
the target image and the images from other categories. SIM
exponentially augments images along a linear path from the
target image to a baseline image, which is the origin. Ad-
mix, in contrast, first augments the target image with the
mixture of the target image and the images from other cate-
gories. Then it also exponentially augments images along a
linear path from the mixture image to the origin. Therefore,
such methods only consider the image augmentation path to
one baseline image, i.e., the origin. Besides, although they
attempt to augment images that are semantics-consistent to
the target image [17,28], they fail to constrain the length of
the image augmentation path, which may result in augment-
ing semantics-inconsistent images.

To overcome the pitfalls of existing augmentation-based
attacks, we propose a transfer-based attack called Path-
Augmented Method (PAM). PAM proposes to augment im-
ages from multiple image augmentation paths to improve
the transferability of the learned adversarial sample. How-
ever, due to the continuous space of images, the possible
image augmentation paths starting from the target image
are countless. In order to cope with the efficiency prob-
lem, we first select representative path directions to con-
struct a candidate augmentation path pool. Then we settle
the employed augmentation paths during adversarial sam-
ple generation with greedy search. Furthermore, to avoid
augmenting semantics-inconsistent images, we train a Se-
mantics Predictor, which is a lightweight neural network, to
constrain the length of each augmentation path.

The difference between our PAM and SIM is illustrated

in Figure 1. During the generation of adversarial samples,
PAM augments images along multiple image augmentation
paths from the target image to different baseline images,
while SIM only augments images along a single image aug-
mentation path from the target image to the origin. Be-
sides, PAM constrains the length of the image augmenta-
tion path to avoid augmenting images that are far away from
the target image and preserve the semantic meaning of the
target image. In contrast, SIM may augment images that
are semantics-inconsistent with the target image due to the
overlong image augmentation path.

To confirm the superiority of our PAM, we conduct ex-
tensive experiments against both undefended and defended
models on the ImageNet dataset. Experimental results show
that our PAM can achieve an improvement of over 3.7%
on average compared with the state-of-the-art baselines in
terms of the attack success rates. Since our method can be
combined with other attack strategies, we also evaluate the
performance of the combination of PAM with other compat-
ible attack methods. Again, experimental results confirm
that our method can significantly outperform the state-of-
the-art baselines by about 7.2% on average.

In summary, our contributions in this paper are threefold:

• We discover that the state-of-the-art augmentation-
based attacks (SIM and Admix) actually augment
training images from a linear path for learning adver-
sarial samples. We argue that they suffer from limited
and overlong augmentation paths.

• To address their pitfalls, We propose the Path-
Augmented Method (PAM). PAM augments images
from multiple augmentation paths during the genera-
tion of adversarial samples. Besides, to make the aug-
mented images preserve the semantic meaning of the
target image, we train a Semantics Predictor (SP) to
constrain the length of each augmentation path.

• We conduct extensive experiments to validate the ef-
fectiveness of our methodologies. Experimental re-
sults confirm that our approaches can outperform the
state-of-the-art baselines by a margin of over 3.7% on
average. Besides, when combined with other compati-
ble strategies, our method can significantly surpass the
state-of-the-art baselines by 7.2% on average.

2. Related Work
2.1. Adversarial Attack Method

According to the knowledge of the attacker, there are two
categories of attacks in general: white-box and black-box
attacks [4]. White-box attacks assume the white-box set-
ting, where attackers have full access to the victim model,
including the model structures and parameters. Fast Gradi-
ent Sign Method (FGSM) [9] is the first white-box attack

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#10640

CVPR
#10640

CVPR 2023 Submission #10640. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

that utilizes the sign of the input gradient to maximize the
classification loss to generate adversarial samples in one
step. Basic Iterative Method (BIM) [15] deploys FGSM
to iteratively perturb images to improve the attack perfor-
mance. Project Gradient Descent (PGD) [20] extends BIM
with random start to generate diverse adversarial samples.
Current white-box attacks can achieve nearly 100% attack
success rates in white-box settings. However, they cannot
handle black-box situations, where the model structures and
parameters are unseen.

As a result, black-box attacks have attracted increas-
ing attention from researchers recently, which can work
in the black-box setting. There are generally two cate-
gories of black-box attacks. One is the query-based at-
tacks [2, 3, 10, 21], and the other is the transfer-based at-
tacks [7,8,17,33]. Query-based attacks generally determine
the susceptible direction of the victim model through query-
ing it with deliberately designed inputs [2, 3, 10]. However,
query-based attacks may incur prohibitive query costs, hin-
dering their practical application. Transfer-based attacks
exploit the transferability of adversarial samples, which
means that the adversarial samples generated by a local
source model can also mislead a different target model. Due
to their high efficiency, transfer-based attacks are a research
hot spot. However, adversarial samples crafted by white-
box attacks generally possess limited transferability.

There are mainly two methodologies to improve the
transferability of white-box attacks. The first one is the
optimizer-based approach, which aims to escape from poor
local optima by adjusting the employment of vanilla gra-
dients during the generation of adversarial samples. For
example, Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) [7] integrates the momentum term into BIM to
improve its adversarial transferability.

The other one is the augmentation-based method, which
can be further categorized into two lines. The first one ac-
tually augments images from a linear path. For example,
Scale Invariant Method (SIM) [17] exponentially augments
images along the linear path from the target image to the
origin. Admix [28] follows a similar image augmentation
path while modifying the starting points as the mixture of
the target image and the images from other classes. The
other line banks on affine transformations to augment im-
ages. For example, the Diverse Input Method (DIM) [33]
applies random resizing and padding, while Translation In-
variant Method (TIM) [8] employs shifting. Since affine
transformations focus on changing the pixel positions of an
image, the augmented images are less diverse than those
from a linear path, leading to inferior transferability [28].

Unfortunately, state-of-the-art augmentation-based at-
tacks, like SIM and Admix, only consider the image aug-
mentation path to one baseline image, i.e., the origin. Be-
sides, they fail to constrain the length of the image aug-

mentation path, which may be overlong and result in aug-
menting images that are far away from and semantics-
inconsistent with the target image. To overcome the defi-
ciencies of such augmentation-based attacks, we propose
the Path-Augmented Method (PAM). To make the aug-
mented images more diverse, we propose to augment im-
ages from multiple augmentation paths during the gener-
ation of adversarial samples. Besides, to make the aug-
mented images preserve the semantic meaning of the tar-
get image, we train a Semantics Predictor (SP) to constrain
the length of each augmentation path. As a result, our
scheme can achieve superior performance over state-of-the-
art transfer-based attacks.

2.2. Adversarial Defense

Many adversarial defense methods have been proposed
to alleviate the threat of adversarial samples, which can be
generally grouped into two categories. The first category
is adversarial training, which keeps the state-of-the-art de-
fense methods [15, 26]. Adversarial training retrains the
model by injecting the adversarial samples into the train-
ing data to improve its robustness [9]. Ensemble adversar-
ial training augments the training data with perturbations
transferred from several other models to defend against
transfer-based attacks [15]. The other category is to pu-
rify the adversarial samples. They rectify adversarial per-
turbations by pre-processing inputs without losing classifi-
cation performance on benign images. The state-of-the-art
defense methods in this category include utilizing a high-
level representation guided denoiser [16], random resiz-
ing and padding [32], a JPEG-based defensive compression
framework [19], a compression module [13], and random-
ized smoothing [6]. In this paper, we exploit these state-of-
the-art defenses to evaluate the effectiveness of our attack
against defended models.

3. Method
In this section, we first describe the state-of-the-art

augmentation-based attacks (SIM and Admix). Then we an-
alyze the limitation of such approaches. We finally present
our Path-Augmented Method (PAM) to overcome the pit-
falls of such attacks.

3.1. Augmentation-based Attacks

We first set up some notations. We denote the benign in-
put image as x and the corresponding true label as y. We
represent the output of a DNN classifier by f(x). J(x, y)
stands for the classification loss function of the classifier,
which is usually the cross-entropy loss. Given the target
image x, adversarial attacks aim to find an adversarial sam-
ple xadv , which can mislead the classifier, i.e., f(xadv) ̸=
f(x), while it is human-imperceptible, i.e., satisfying the
constraint

∥∥x− xadv
∥∥
p
< ϵ. ∥·∥p represents the Lp norm,

3
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and we focus on the L∞ norm here to align with previous
papers [7, 17].

Prevailing white-box attacks like FGSM [9] usually craft
adversarial samples by solving the following constrained
maximization problem:

max
xadv

J(xadv, y) s.t.
∥∥x− xadv

∥∥
∞ < ϵ.

Scale Invariant Method (SIM) first computes the aver-
age gradient ḡ of the classification loss with respect to m
scaled copies of the target image. Then it updates the target
image with the sign of ḡ by a small step size ϵ′ = ϵ

T in each
iteration, where T is the iteration number. The update rule
is formulated below:

ḡt+1 =
1

m

m−1∑
i=0

∇xadv
t

J(
1

2i
· xadv

t , y),

xadv
t+1 = xadv

t + ϵ′ · sgn{ḡt+1}.

(1)

Admix first replaces the target image with m2 mixtures
of the target image and the images from other categories
(x′ ∈ X ′). Then it follows SIM by using m1 scale copies of
the mixed images. Therefore, Admix computes the update
gradient as follows:

ḡt+1 =

1

m1 ·m2

∑
x′∈X′

m1−1∑
i=0

∇xadv
t

J(
1

2i
· (xadv

t + η · (x′)), y),

where η is the strength of x′ in the mixture image.

3.2. Analysis

After pre-processing, the pixel value of an image will
be normalized. We denote the image with pixel values all
equal to 0 as the origin 0 in the normalized space. We note
that the origin is a pure color image, since all its pixels have
constant RGB values when we transform the origin in the
normalized space back to the original color space.

We find that when generating adversarial samples, SIM
and Admix actually augment images from a linear path.
Specifically, SIM augments multiple scaled copies of the
target image: 1

2i · xadv
t = 1

2i · xadv
t + (1 − 1

2i ) · 0, which
is a linear combination of the target image and the ori-
gin. Therefore, SIM exponentially augments images along
a linear path from the target image to the origin. Admix
first replaces the target image with the mixture of the tar-
get image and the image from other categories (x′ ∈ X ′):
xadv
t + η · x′. Then it follows SIM to augment multiple

scaled copies of the mixture image: 1
2i · (x

adv
t + η · x′) =

1
2i ·(x

adv
t +η ·x′)+(1− 1

2i )·0, which is also a linear combi-
nation of the mixed target image and the origin. Therefore,

Admix exponentially augments images along a linear path
from the mixed target image to the origin.

From the above analysis, we argue that SIM and Ad-
mix suffer from two pitfalls. The first one is the limited
augmentation path. SIM and Admix only consider the aug-
mentation path to one baseline image, which is the origin.
However, there are other possible augmentation paths that
can increase the diversity of the augmented images. There-
fore, the limited diversity of the augmented images can in-
cur limited transferability of the resultant adversarial sam-
ple. Besides, the augmentation path of SIM and Admix may
be overlong. They may augment images that are too far
away from the target image. As a result, the augmented im-
ages are close to the origin, which contains no information
about the target image. Augmenting such images can dis-
tract the learning of adversarial samples against the target
image, thus harming adversarial transferability.

3.3. Path-Augmented Method

To overcome the pitfalls of state-of-the-art
augmentation-based attacks, we propose the Path-
Augmented Method (PAM). We first describe how we
explore more augmentation paths to increase the diversity
of augmented images. Then we introduce our method to
constrain the length of the augmentation path to make the
augmented images preserve the semantic meanings of the
target image.

3.3.1 Augmentation Path Exploration

In order to diversify the augmented images, we propose to
explore more augmentation paths. In fact, the augmentation
paths starting from the target image are numerous, consid-
ering the continuous image space. In order to deal with the
efficiency problem, we first construct a candidate augmen-
tation path pool by selecting representative augmentation
paths. Then, we employ the augmentation path candidate in
a greedy manner when crafting adversarial samples.

We first demonstrate the construction of the candidate
augmentation path pool. To reduce the numerous searching
space and align with SIM, we only consider the pure color
images as the baseline image for the augmentation path.
Moreover, we select distinct baseline images to guarantee
the augmented images on the paths are diverse. The close
augmented images have similar augmented gradients hav-
ing similar effects on transferability. Therefore, we divide
the whole image space into multiple regions and select one
baseline from each region as the representative augmenta-
tion path to form a candidate augmentation path pool. In
general, we regard the image space is normalized to [-1,
1] for the RGB channel. We divide each channel by three
points (-1, 0, 1) to largely diversify the path, so we have
33 = 27 representative augmentation paths for the image

4
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space. Although we can divide each channel more precisely,
the number of augmentation paths increase in cubic degree.
Therefore, our way of constructing the augmentation path
pool is efficient in improving the transferability.

Afterward, we discuss how to utilize the constructed
augmentation path pool for generating adversarial samples.
Intuitively, we combine more augmentation paths to com-
pute the gradient, the higher transferability we can obtain,
but the computation complexity will increase. Thus, we
should balance the transferability and the computation com-
plexity. In consequence, the number of augmentation paths
n we select is a hyperparameter to tune. After the determi-
nation of the augmentation paths number for computing the
gradient, we should also figure out the augmentation paths
we select from the candidate augmentation path pool. We
first rank the augmentation paths in the candidate path pool
by deploying the following adversarial attack and measur-
ing the average transferability on a development dataset to
rank each augmentation path. For simplicity, we denote
the baseline image from the path pool as x′. Therefore
the i-th scaled augmented image along the path from the
target image x to the baseline image x′ is represented by
1
2i · x+ (1− 1

2i ) · x
′.

ḡt+1 =
1

m

m−1∑
i=0

∇xadv
t

J(
1

2i
· xadv

t + (1− 1

2i
) · x′, y)

We follow a greedy manner in that we choose the top-
n augmentation paths and directly combine the gradient of
augmented images from those augmentation paths together
for generating adversarial samples.

3.3.2 Semantics Preservation

In order to keep the semantics of the augmented images on
the augmentation paths consistent with the target image, we
can constrain the length of the augmentation path and aug-
ment the images in the semantics-consistent part to avoid
the overlong path. However, it is hard to directly know
the semantics-consistent part of the augmentation path. We
can use the prediction of the classifier on the image along
the augmentation path to identify the semantics-consistent
length. If the augmented image is semantics-consistent, the
augmented image should have the same prediction as the
target image. Therefore, the semantics-consistent length is
actually to find the decision boundary of the target image
class along the augmentation path. Thus, we train a Seman-
tics Predictor (SP) to constrain the length of each augmen-
tation path. The SP takes the image as the input and predicts
the semantic ratio on each augmentation path. The seman-
tic ratio is represented by a scaling factor r ∈ [0, 1] on each
augmentation path. Therefore, we can utilize the semantic
ratio to constrain the length of the augmentation path. We

augment the gradient in the semantics-consistent length to
obtain meaningful gradients. Therefore, the i-th scaled im-
age along the augmentation path from the target image x
to the baseline image x′ with a semantic scaling factor r is
represented by (1− r(1− 1

2i )) · x+ (1− 1
2i )r · x

′.
The Semantics Predictor (SP) is a lightweight neural net-

work consisting of five layers: two Convolutional layers,
two Average Pooling layers, and one Fully Connected layer.
The image is fed into one Convolutional layer with a kernel
size of 5× 5 and one Average Pooling layer with a stride of
4, which can largely reduce the dimension. Then the feature
map is sent into another Convolutional layer and Average
Pooling layer with the same setting. After that, the feature
map is fed into a Fully Connected layer with Sigmoid acti-
vation, and the output size is set to be the number of aug-
mentation paths. The output of the lightweight neural net-
work is exactly the semantic scaling factor of each augmen-
tation path. The training objective is to minimize the differ-
ence between the confidence score of the true label and the
highest confidence score from other classes, as shown be-
low. We train the Semantics Predictor with Adam optimizer
for ten epochs and set the learning rate to be 1× 10−4.

xb = SP (x) · x′ + (1− SP (x)) · x

loss =

∥∥∥∥F (xb, y)−max
y′ ̸=y

F (xb, y
′)

∥∥∥∥
2

3.3.3 Attacking Equation and Comparison

The attacking equation of PAM is shown below, where x′
j

is the baseline image of j-th augmentation path in the aug-
mentation path pool, and rj is the semantic ratio of j-th aug-
mentation path from the Semantic Predictor. n is the num-
ber of augmentation paths, and m is the number of copies.
The detailed PAM algorithm is shown in the Appendix.

xi,j
t = (1− rj(1−

1

2i
)) · xadv

t + (1− 1

2i
)rj · x′

j

ḡt+1 =
1

m · n

n−1∑
j=0

m−1∑
i=0

∇xadv
t

J(xi,j
t , y)

Finally, we regard the current state-of-the-art methods
SIM [17], and Admix [28] are special cases of the PAM be-
cause both SIM and Admix treat the origin as the baseline
and augment the gradient along a linear path. SIM utilizes
the target image as the starting point, but Admixs select
mixtures of the target image with images from other classes
as starting points. Our PAM tries to solve two problems of
the previous methods: the limited and overlong augmenta-
tion path. We first augment images from multiple augmen-
tation paths to explore other augmentation directions. Be-
sides, we train a lightweight neural network Semantic Pre-
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dictor to constrain the length of each augmentation path for
providing a semantics-consistent gradient.

4. Experiments
In this section, we conduct experiments to validate the

effectiveness of our proposed approach. We first specify
the setup of the experiments. Then, we present the attack-
ing results of our approach against both state-of-the-art un-
defended and defended models. Finally, we present the ab-
lation study on the number of augmentation paths and the
Semantic Predictor.

4.1. Experimental Setup

We focus on attacking image classification models
trained on ImageNet [23], which is the most widely recog-
nized benchmark task for transfer-based attacks [5, 14, 31]
and is a more challenging dataset compared to MNIST and
CIFAR-10. We follow the protocol of the baseline method
[17] to set up the experiments, whose details are shown as
follows.

Dataset. We randomly sample 1000 images of different
categories from the ILSVRC 2012 validation set [23]. We
ensure that nearly all selected test images can be correctly
classified by all of the models deployed in this paper. We
also randomly sample another 1000 images as the develop-
ment set to train Semantics Predictor and rank representa-
tive augmentation paths.

Target Model. We consider both undefended (nor-
mally trained) models and defended models as the tar-
get models. For undefended models, we choose four top-
performance models with different architectures, contain-
ing Inception-v3 (Inc-v3) [25], Inception-v4 (Inc-v4) [24],
Inception-Resnet-v2 (IncRes-v2) [24], and Resnet-v2-101
(Res-v2) [11, 12]. For defended models, we consider three
adversarially trained models, because adversarial training is
the most simple but effective way to defend attacks [20].
The selected defended models include Inception v3 trained
with adversarial samples from an ensemble of three models
(Inc-v3ens3), and four models (Inc-v3ens4), and adversarially
trained Inception-Resnet-v2 (IncRes-v2adv). Furthermore,
we include six advanced defense models that are robust
against black-box attacks on the ImageNet dataset. These
defenses cover high-level representation guided denoiser
(HGD) [16], random resizing and padding (R&P) [32],
NIPS-r31, feature distillation (FD) [19], compression de-
fense (ComDefend) [13], and randomized smoothing (RS)
[6].

Baseline. We take an advanced optimizer-based attack:
MI-FGSM [7] as our baseline because it exhibits better
transferability than white-box attacks [9, 15]. Furthermore,
SIM [17] and Admix [28] can be viewed as special cases of

1https://github.com/anlthms/nips-2017/tree/master/mmd

our proposed PAM, so we select them as baselines. In or-
der to show that our approaches achieve state-of-the-art per-
formance, we select Variance Tuning Method [27] (VMI)
because Admix and VMI are the current state-of-the-art
transfer-based attack methods. In addition, we integrate
all the methods with other augmentation-based methods:
DIM [33] and TIM [8] for further comparison. We denote
the approaches with DT extension as the method combined
with DIM and TIM.

Metric. We evaluate the performance of attack methods
via the attack success rate against the target model. The at-
tack success rate is the percentage of adversarial samples
that successfully mislead the target model over the total
number of the generated adversarial sample.

Parameter. Following [7], we set the maximum per-
turbation budget ϵ = 16, the number of attack iterations
T = 10, and the step length ϵ′ = 1.6. We set the decay
factor µ = 1.0 for all the methods. We follow the source
code of SIM [17] and Admix [28] to change the number of
scale copies to 32 and 8 for a fair comparison with the same
computation complexity as PAM. For DIM, we set the trans-
formation probability to 0.5. We deploy the 7 × 7 Gaussian
kernels for TIM. We take n = 8 and m = 4 for PAM.

4.2. Attack Transferability

First, we study the performance of our attack method
PAM against both undefended and defended models. We
fix a source model and produce adversarial samples with
different attack methods. The generated samples are then
fed into the target models to compute the attack success
rates. Our attack achieves nearly 100% success rates un-
der the white-box scenarios in Table 1. More importantly,
on the evaluation of transferability, our technique can dras-
tically outperform VMI over 10% and Admix about 3.7%
under the black-box setting on average. In addition, PAM
improves the transferability to adversarially trained models,
largely showing a high threat to adversarial training. Be-
sides, our attack consistently outperforms other baselines
by a significant margin under the black-box setting, which
confirms the superiority of our strategies on transferable ad-
versarial sample generation.

Then, we combine all the baselines with augmentation-
based methods: DIM and TIM to further enhance the trans-
ferability. As shown in Table 2, the attack success rates
against black-box models are promoted by a large margin
with our approaches. In general, our attacks consistently
outperform the state-of-the-art baselines by about 7.2%,
which further corroborates the effectiveness of our method.

In addition, we also evaluate the performance of differ-
ent attacks against advanced defenses. Table 3 shows the
results when adopting Inc-v3 as the source model to attack
other advanced defense models. Our attacks reduce the ac-
curacy of defended models to 52.7% on average, defeating
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Inc-v3

MI-FGSM 100.0 44.1 43.1 35.1 13.2 13.2 6.2
SIM 100.0 69.9 67.7 63.2 36.7 31.4 17.5
VMI 100.0 71.7 67.1 59.9 36.3 31.0 17.8

Admix 100.0 80.1 79.1 70.1 36.9 34.8 19.0
PAM 100.0 82.9 82.2 77.5 44.8 43.9 22.0

Inc-v4

MI-FGSM 55.1 99.6 46.7 41.6 16.1 15.0 7.8
SIM 81.2 99.5 73.8 68.7 47.2 44.6 29.1
VMI 77.9 99.7 71.1 61.8 38.4 36.5 24.0

Admix 87.0 99.7 82.9 78.2 50.6 47.5 31.3
PAM 90.5 100.0 83.9 79.7 57.9 52.9 34.0

IncRes-v2

MI-FGSM 60.1 51.2 97.9 46.7 21.0 16.0 10.9
SIM 84.4 80.7 99.0 76.0 56.1 48.6 41.9
VMI 78.6 73.4 98.2 67.6 48.4 39.9 33.5

Admix 87.7 85.3 99.1 80.4 61.4 54.6 47.3
PAM 90.8 88.3 99.6 84.9 68.6 62.0 51.0

Res-v2

MI-FGSM 57.2 51.4 48.7 99.2 24.2 22.4 12.7
SIM 74.2 70.4 68.9 99.8 42.9 38.6 25.2
VMI 75.0 68.8 69.4 99.3 45.6 41.0 29.6

Admix 80.3 75.6 76.1 99.8 45.5 40.8 27.5
PAM 81.8 77.4 76.9 100.0 53.1 45.9 31.0

Table 1. The attack success rates (%) against seven models by various transfer-based attacks. The best results are marked in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Inc-v3

SIM-DT 99.0 85.7 80.3 75.1 67.6 63.1 46.0
VMI-DT 99.2 78.4 75.2 67.9 58.1 57.4 44.5

Admix-DT 99.6 88.1 85.6 79.1 69.2 66.1 48.9
PAM-DT 99.4 92.5 91.5 89.4 80.1 77.9 55.9

Inc-v4

SIM-DT 86.4 98.4 84.2 77.9 69.9 67.1 56.1
VMI-DT 81.4 98.4 76.4 67.0 58.8 56.7 49.8

Admix-DT 88.8 99.4 85.8 80.2 72.4 69.0 57.6
PAM-DT 93.9 99.7 91.9 88.1 83.1 78.1 67.2

IncRes-v2

SIM-DT 88.2 85.6 97.4 82.2 77.6 73.2 72.7
VMI-DT 78.8 77.2 94.8 71.8 63.9 59.9 59.3

Admix-DT 88.2 87.4 98.2 84.0 80.0 75.4 71.8
PAM-DT 95.3 93.2 99.3 90.8 88.8 86.4 82.8

Res-v2

SIM-DT 85.8 80.9 84.8 98.5 76.2 70.3 62.0
VMI-DT 81.0 78.8 78.3 98.1 69.5 65.7 57.2

Admix-DT 89.0 85.5 86.2 99.9 78.2 73.1 64.5
PAM-DT 90.0 86.8 88.0 99.5 84.4 79.6 71.6

Table 2. The attack success rates (%) on eight models by various transfer-based attacks combined with augmentation-based strategies. The
best results are marked in bold.

all baseline attacks. It validates the effectiveness of our at-
tack against advanced defense models, raising security con-
cerns for developing more robust defenses.

4.3. Ablation Study

We conduct ablation studies to examine two designs in
our proposed PAM: the number of augmentation paths n
and the Semantics Predictor. Adversarial samples are gen-

erated by attacking the Inc-v3 model without employing
augmentation-based methods.

Number of Augmentation Paths. We investigate the
effect of different augmentation path numbers on attack
performance. We employ PAM with top-n augmentation
paths for generating adversarial samples based on the Inc-
v3 model. The result is shown in Figure 2. With the in-
crease of the number of augmentation paths, transferabil-
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Attack HGD R&P NIPS-r3 FD ComDefend RS Average
SIM 15.1 28.1 36.6 59.5 55.1 22.3 36.1
VMI 15.8 27.0 33.3 54.8 52.0 22.5 34.2

Admix 32.4 30.5 41.3 64.4 60.8 23.7 42.2
PAM 41.0 40.3 48.1 66.0 63.8 24.3 47.3

Table 3. The attack success rates (%) of six advanced defense mechanisms on adversarial samples. The adversarial samples are generated
on the Inc-v3 model by various transfer-based attacks. The best results are marked in bold.

Figure 2. The attack success rates (%) of PAM with different num-
ber of augmentation paths n.

ity improves. However, the computation cost also rises as
the number of augmentation paths increases. Therefore, we
choose n = 8 to balance the performance and computation
cost. Besides, we find an intriguing observation that the se-
lected augmentation path is not the same as SIM or Admix
when n = 1. Our top-1 augmentation path improves the
transferability of SIM with more than 1% on average with-
out introducing additional computation complexity. This
means the augmentation path of SIM and Admix is not op-
timal.

Semantics Predictor. We study the influence of Seman-
tics Predictor on attack performance for PAM and the per-
formance improvement for SIM. As shown in Table 4, the
transferability of SIM can be improved by 1% on average
by utilizing the Semantics Predictor because some of the
augmented images are semantics-inconsistent with the tar-
get image as shown in Figure 3. We cannot recognize the
object in the augmented image of SIM. However, the aug-
mented image of SIM+SP demonstrates consistency with
the target image, which shows the effectiveness of the Se-
mantic Predictor. In addition, SIM+path+SP outperforms
SIM+path by more than 4%, showing Semantics Predictor
improves more transferability when we combine multiple
augmentation paths together. Besides, SIM + path surpasses
SIM by a large margin, which also demonstrates the effec-
tiveness of exploring more augmentation paths.

Model IncRes-v2 Res-v2 Inc-v3ens4 IncRes-v2adv

SIM 67.7 63.2 31.4 17.5
SIM+SP 68.3 64.3 32.5 18.3
SIM+paths 79.3 74.2 38.5 19.6
SIM+paths+SP (PAM) 82.2 77.5 43.9 22.0

Table 4. The attack success rates (%) against selected four black-
box models by various transfer-based attacks.

Original Image SIM SIM+SP

Figure 3. Visualization of original image and augmented images.
We fail to identify the object in the augmented image of SIM.
However, the object in the augmented image of SIM+SP is rec-
ognizable.

5. Conclusion

In this paper, we propose to investigate the problems of
current state-of-the-art data augmentation-based attacks and
improve their transferability. Specifically, we argue they
suffer from the limited and overlong augmentation path.
PAM proposes to augment images from multiple image aug-
mentation paths to improve the transferability of the learned
adversarial sample. However, due to the continuous space
of images, the possible image augmentation paths starting
from the target image are countless. In order to cope with
the efficiency problem, we first select representative path
directions to construct a candidate augmentation path pool.
Then we settle the employed augmentation paths during ad-
versarial sample generation with greedy search. Further-
more, to avoid augmenting semantics-inconsistent images,
we train a Semantics Predictor, which is a lightweight neu-
ral network, to constrain the length of each augmentation
path. Extensive experiments confirm the superiority of our
approaches on generating transferable adversarial samples
against both undefended and defended models over state-
of-the-art baselines. In addition, our approaches can gener-
ally be combined with other transfer-based attacks to further
boost their transferability.
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