

GradMA: A Gradient-Memory-based Accelerated Federated Learning with Alleviated Catastrophic Forgetting

Kangyang Luo, Xiang Li, Shiyun Lan, Ming Gao East China Normal University, Shanghai, China Paper tag: TUE-AM-353

Conclusion

Federated Learning (FL) has emerged as a de facto machine learning area and received rapid increasing research interests from the community. However, catastrophic forgetting caused by data heterogeneity and partial participation poses distinctive challenges for FL, which are detrimental to the performance.

To tackle the problems, we propose a new FL approach, dubbed as GradMA (<u>Gradient-Memory-based Accelerated Federated Learning</u>), which takes inspiration from continual learning to both correct the server-side and worker-side update directions as well as take full advantage of server's rich computing and memory resources. Furthermore, we elaborate a memory reduction strategy to enable GradMA to accommodate FL with a large scale of workers.We then analyze convergence of GradMA theoretically under the smooth non-convex setting and show that its convergence rate achieves a linear speed up w.r.t the increasing number of sampled active workers. At last, our extensive experiments on various image classification tasks show that GradMA achieves significant performance gains in accuracy and communication efficiency compared to SOTA baselines.

GradMA

• Correcting gradient for the worker side

GradMA

• Correcting update direction for the server side

Algorithm 3 Server_Update($[d_{t+1}^{(i)}, i \in S_t], \tilde{m}_t, D, \eta_g, \beta_1,$ $\beta_2, buf, new_buf)$ 1: $d_{t+1} = \frac{1}{S} \sum_{i \in S_t} d_{t+1}^{(i)}, m_{t+1} = \beta_1 \tilde{m}_t + d_{t+1}.$ 2: for $c(i) \in buf$ do 3: if $i \in S_t$ then $oldsymbol{D}[i] \leftarrow \left\{ egin{array}{l} eta_2 oldsymbol{D}[i] + oldsymbol{d}_{t+1}^{(i)}, c(i)
otin new_buf \ oldsymbol{d}_{t+1}^{(i)}, c(i)
otin new_buf \end{array}
ight. .$ 4: else if $i \notin S_t$ then 5: $D[i] \leftarrow \beta_2 D[i].$ 6: end if 7: 8: end for 9: $\tilde{\boldsymbol{m}}_{t+1} = \operatorname{QP}_{\boldsymbol{g}}(\boldsymbol{m}_{t+1}, \boldsymbol{D}), \boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \eta_{\boldsymbol{g}} \tilde{\boldsymbol{m}}_{t+1}.$ 10: Output: $D, x_{t+1}, \tilde{m}_{t+1}$.

$$egin{aligned} & d_{t+1} = rac{1}{S} \sum_{i \in \mathcal{S}_t} d_{t+1}^{(i)}, m_{t+1} = eta_1 ilde{m}_t + d_{t+1}, \ & egin{aligned} & D[i] \leftarrow \left\{ egin{aligned} & eta_2 egin{aligned} & eta_2 egin{aligned} & D[i] + d_{t+1}^{(i)}, i \in \mathcal{S}_t \ & eta_2 egin{aligned} & eta_2 egin{aligned} & D[i], i \notin \mathcal{S}_t \ & eta_t \end{bmatrix}, \ & ilde{m}_{t+1} = \operatorname{QP}_g(m_{t+1}, eta), x_{t+1} = x_t - \eta_g ilde{m}_{t+1} \end{aligned}$$

GradMA

• A Practical Memory Reduction Strategy

Algorithm 4 mem_red $(m, S, c, D, buf, new_buf)$

1: f	or $i \in \mathcal{S}$ do
2:	if $c(i) \in buf$ then
3:	$c(i) \leftarrow c(i) + 1.$
4:	else if $c(i) \notin buf$ then
5:	if $Length(buf) = m$ then
6:	$old_buf = \{\}.$
7:	for $k \in buf$ do
8:	if $k \notin S$ then
9:	$old_buf \leftarrow old_buf \cup \{c(k)\}.$
10:	end if
11:	end for
12:	Discarding $c(i')$ with the smallest value from
	old_buf and set $c(i') = 0$.
13:	Discarding $D[i']$ from memory state D .
14:	end if
15:	$c(i) \leftarrow c(i) + 1.$
16:	$buf \leftarrow buf \cup \{c(i)\}.$
17:	$new_buf \leftarrow new_buf \cup \{c(i)\}.$
18:	end if
19: e	nd for
20: C	Dutput: c, D, buf, new_buf

Convergence Results for GradMA

Assumption 1 (Global function below bounds). Set $f^* = \inf_{x \in \mathbb{R}^d} f(x)$ and $f^* > -\infty$.

Assumption 2 (L-smooth). $\forall i \in [N]$, the local functions f_i are differentiable, and there exist constant L > 0 such that for any $x, y \in \mathbb{R}^d$, $\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|$.

Assumption 3 (Bounded data heterogeneity). The degree of heterogeneity of the data distribution across workers can be quantified as $\|\nabla f_i(x) - \nabla f(x)\|^2 \le \rho^2$, for any $i \in [N]$ and some constant $\rho \ge 0$.

Assumption 4 (Bounded optimal solution error for QP_l). Given $g^{(i)} = \nabla f_i(x)$ (see Alg. 2), then there exists $\varepsilon_l > 0$ such that $\|g^{(i)} - \tilde{g}^{(i)}\|^2 \le \varepsilon_l^2$.

Assumption 5 (Bounded optimal solution error for QP_g). Given $\beta_2 \in [0,1)$ and m (see Alg. 3), then there exists $\varepsilon_g > 0$ such that $||m - \tilde{m}||^2 \le \frac{\varepsilon_g^2}{1 - \beta_2}$. **Theorem 1** Assume Assumptions 1-5 exist. Let $\eta_l \leq \frac{1}{160^{0.5}LI}$, $\eta_g \eta_l \leq \frac{(1-\beta_1)^2 S(N-1)}{IL(\beta_1 S(N-1)+4N(S-1))}$ and $320I^2 \eta_l^2 L^2 + \frac{64I\eta_g \eta_l L(1+40I^2 \eta_l^2 L^2)}{(1-\beta_1)^2} \frac{N-S}{S(N-1)} \leq 1$. For all $t \in [0, \dots, T-1]$, the following relationship generated by Alg. 1 holds:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla f(x_t)\|^2 \right] \le \frac{8(1-\beta_1)(f(x_0)-f^*)}{I\eta_g \eta_l T} + C_1 \varepsilon_l^2 + C_2 \varepsilon_g^2 + C_3 \rho^2,$$

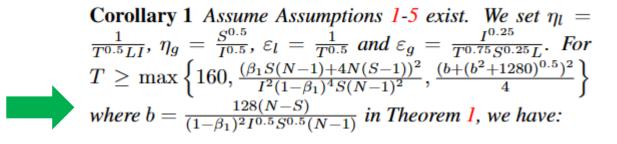
where the expectation \mathbb{E} is w.r.t the sampled active workers per communication round, and $C_1 = 8 + 320I^2\eta_l^2L^2 + \frac{64I\eta_g\eta_l L(1+40I^2\eta_l^2L^2)}{(1-\beta_1)^2}\frac{N-S}{S(N-1)}, C_2 = \frac{20\eta_g L}{(1-\beta_1)^2(1-\beta_2)I\eta_l} + \frac{8}{(1-\beta_2)I^2\eta_l^2}, C_3 = C_1 - 8.$

Convergence Results for GradMA

Theorem 1 Assume Assumptions 1-5 exist. Let $\eta_l \leq \frac{1}{160^{0.5}LI}$, $\eta_g \eta_l \leq \frac{(1-\beta_1)^2 S(N-1)}{IL(\beta_1 S(N-1)+4N(S-1))}$ and $320I^2 \eta_l^2 L^2 + \frac{64I\eta_g \eta_l L(1+40I^2 \eta_l^2 L^2)}{(1-\beta_1)^2} \frac{N-S}{S(N-1)} \leq 1$. For all $t \in [0, \dots, T-1]$, the following relationship generated by Alg. 1 holds:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla f(x_t)\|^2 \right] \le \frac{8(1-\beta_1)(f(x_0)-f^*)}{I\eta_g \eta_l T} + C_1 \varepsilon_l^2 + C_2 \varepsilon_g^2 + C_3 \rho^2,$$

where the expectation \mathbb{E} is w.r.t the sampled active workers per communication round, and $C_1 = 8 + 320I^2\eta_l^2L^2 + \frac{64I\eta_g\eta_l L(1+40I^2\eta_l^2L^2)}{(1-\beta_1)^2}\frac{N-S}{S(N-1)}, C_2 = \frac{20\eta_g L}{(1-\beta_1)^2(1-\beta_2)I\eta_l} + \frac{8}{(1-\beta_2)I^2\eta_l^2}, C_3 = C_1 - 8.$



$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[\|\nabla f(x_t)\|^2 \right] = \mathcal{O}\left(\frac{I^{0.5}}{S^{0.5}T^{0.5}} + \frac{1}{T} \right).$$

Empirical Study

• Datasets

MNIST, CIFAR-10, CIFAR-100 and Tiny-ImageNet

• Our methods

GradMA, GradMA-W (for Worker_Update()), GradMA-S (for Server_Update())

• Baselines

FedAvg;

FedAvg's improvements on worker side (FedProx, MOON, FedMLB, Scaffold);

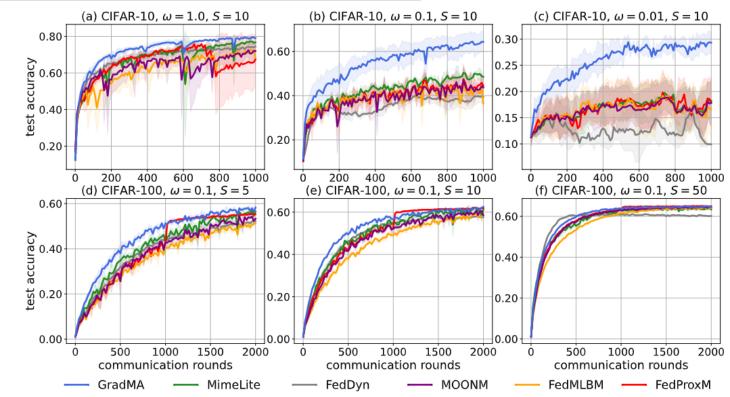
FedAvg's improvements on server side (FedAvgM, MIFA, MIFAM);

FedAvg's improvements on server side and woker side (FedProxM, FedMLBM, MOONM,

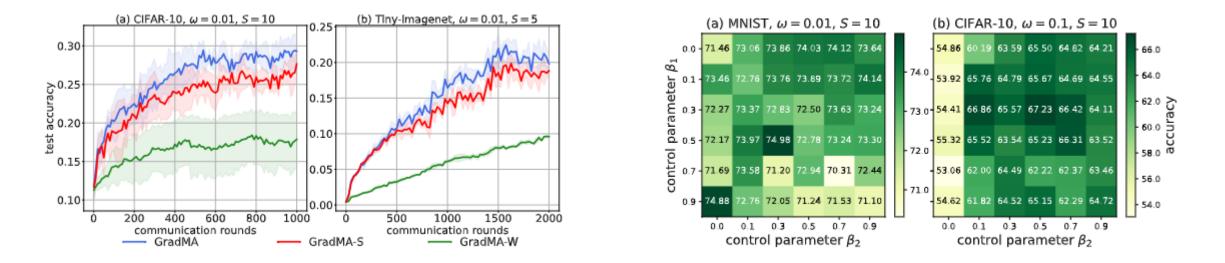
Feddyn, MimeLite).

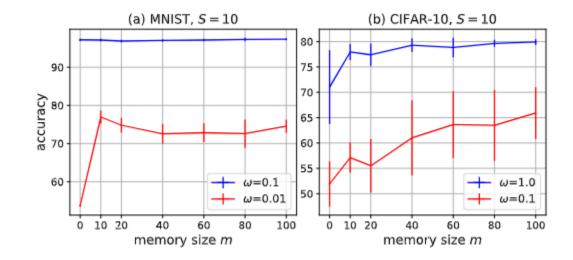
Comparative Experiments Table 1. Top test accuracy (%) overview given different FL scenarios.

	MNIST+NN, $S = 10$			MNIST+NN, $\omega = 0.01$		CIFAR-10+Lenet-5, $S = 10$			CIFAR-100+VGG-11, $\omega = 0.1$			Tiny-Imagenet+Resnet20, (ω, S)		
Alg.s	$\omega=1.0$	$\omega=0.1$	$\omega=0.01$	S = 5	S = 50	$\omega = 1.0$	$\omega=0.1$	$\omega=0.01$	S = 5	S=10	S = 50	(0.01, 5)	(1.0, 5)	(1.0, 10)
FedAvg	98.22 ± 0.05	97.11±0.39	46.19±1.29	49.65±3.88	$68.32{\pm}4.16$	69.48 ± 8.28	47.86 ± 5.26	$\textbf{20.97}{\pm}\textbf{3.73}$	56.02±0.37	61.22 ± 0.16	64.78±0.43	7.50 ± 0.32	$41.80{\pm}0.55$	$42.90{\pm}0.12$
FedProx	98.16±0.09	97.19±0.31	46.82±0.96	49.89±3.67	67.97±4.27	71.58±4.66	48.63±4.92	20.40 ± 3.85	55.94±0.71	61.25±0.09	64.69±0.27	7.51±0.46	41.82±0.29	42.58±0.69
FedMLB	98.31±0.06	97.26±0.40	54.53±0.39	57.22±3.07	68.44±3.26	69.28±6.56	48.99±4.94	20.81±3.26	53.80±0.16	59.20±0.27	64.06±0.30	7.98±0.34	42.83±0.13	43.59±0.80
MOON	98.18 ± 0.12	97.11±0.31	46.26±1.35	50.39±5.16	68.75 ± 4.50	71.11±7.94	48.84±5.16	19.39±3.99	55.37±0.34	60.58 ± 0.60	64.48 ± 0.42	7.70±0.38	41.68 ± 0.22	42.80±0.54
Scaffold	97.63±0.37	93.94±1.18	50.86±7.46	39.97±4.88	49.54±2.28	53.33±6.63	35.91±2.14	15.55±1.33	32.22 ± 0.92	34.72 ± 0.80	45.70±0.76	7.20±0.33	40.96±0.23	43.02±0.30
GradMA-W	98.15 ± 0.10	97.01±0.23	63.34 ± 3.75	65.39±0.96	65.13 ± 2.54	72.33±3.84	50.25±3.94	18.99 ± 4.06	56.43 ± 0.51	$61.38{\pm}0.11$	64.96±0.36	9.98±0.22	43.68 ± 0.23	44.57 ± 0.45
FedAvgM	98.29 ± 0.18	97.20±0.30	53.77±0.32	57.87±3.64	67.80±5.58	71.04±7.29	51.91±4.46	21.02±3.52	55.85±0.28	61.32 ± 0.29	64.88±0.25	16.96 ± 1.08	41.91±0.23	42.57±0.14
MIFA	98.02±0.12	96.88±0.56	66.92±2.53	56.04±3.92	52.84 ± 4.89	71.41±5.81	50.60±11.87	23.78 ± 2.04	50.37±1.02	58.74±0.42	64.71±0.31	8.88±0.33	41.42±0.22	42.83±0.13
MIFAM	98.02±0.15	96.90±0.44	67.15±2.23	55.28±6.05	53.35±6.84	73.48±1.37	52.13±9.71	24.17±1.24	49.30±0.86	58.91±0.24	64.61±0.33	12.01 ± 0.32	41.94±0.06	43.17±0.09
GradMA-S	$\textbf{98.38{\pm}0.09}$	97.35±0.28	74.52 ± 1.71	75.93±0.97	69.09±3.83	78.76±1.96	64.60 ± 5.87	28.41 ± 2.43	59.08±0.43	63.23 ± 0.22	65.63±0.35	20.93±1.49	$48.83{\pm}1.06$	$49.65{\pm}0.72$
FedProxM	98.26 ± 0.08	97.13±0.34	54.50±0.79	58.59±4.58	69.00 ± 4.42	78.00±1.61	51.22±5.14	21.80 ± 3.72	55.63±0.31	63.15 ± 0.12	64.78±0.11	18.30±0.79	37.98±0.10	45.27±0.19
FedMLBM	98.26±0.16	97.35±0.30	61.12 ± 1.48	64.12±4.17	68.78 ± 3.28	73.70±4.62	49.90 ± 5.82	21.53 ± 2.93	53.91±0.78	60.44 ± 0.34	64.85±0.18	17.32 ± 0.82	44.62 ± 0.32	45.18±0.27
MOONM	98.21±0.13	97.04±0.42	62.34±8.91	57.98±5.51	68.82 ± 4.43	73.96±4.11	50.06 ± 6.14	20.19 ± 3.10	56.01±0.25	62.06 ± 0.19	65.37±0.17	16.78±0.95	42.43±0.39	42.78±0.46
Feddyn	97.92±0.12	96.03±0.46	59.39±2.29	65.36±5.20	57.68 ± 4.30	74.94±2.48	41.93±3.22	17.94 ± 3.52	52.95±1.63	58.48 ± 0.18	61.71±0.25	17.89 ± 0.95	44.37±0.57	44.86±0.15
MimeLite	98.19±0.07	97.10±0.31	54.86±13.36	51.04±4.15	69.41±4.15	77.98±1.48	53.27±1.69	20.73±3.33	58.00±0.51	63.29 ± 0.49	64.68±0.33	8.29±0.29	41.05±0.21	41.56±0.18
GradMA	98.39±0.04	97.34±0.35	77.97±1.28	75.51±1.94	66.68±3.03	79.92±0.59	65.91±5.10	30.81 ± 1.78	59.47±0.58	$63.49 {\pm} 0.47$	65.68±0.25	$23.52{\pm}1.32$	49.29±0.86	50.54±0.56



> Ablation Study





Thank You!