

Deep Depth Estimation from Thermal Image

TUE-AM-099

Ukcheol Shin¹, Jinsun Park², In So Kweon¹

¹ KAIST ² Pusan National University

Summary 1. Multi-Spectral Stereo (*MS*²) Dataset

Vehicular Sensor System for MS² dataset

MS² Dataset's Features

- ✓ Multi-sensor Stereo dataset
 - Stereo RGB, Stereo NIR, Stereo thermal cameras
 Stereo LiDAR, single GPS/IMU module
- ✓ Synchronized +Rectified data pairs (180K ↑)
 Projected depth map (in RGB, NIR, thermal image planes)
 - Odometry data (in RGB, NIR, thermal, and LiDAR coordinates)
- A number of places with various conditions
 Day/Night + Clear-sky/Cloudy/Rainy

Same place with various conditions

Location: City (Day, Rain, Night)

Location: Road1 (Day, Rain, Night)

Summary 1. Multi-Spectral Stereo (*MS*²) Dataset

(Left) RGB image, (Left) NIR image (Left) Thermal image, Projected depth map (in thermal camera's coordinate)

Summary 2. Depth Estimation from Thermal Image

(3) Daytime + Rainy condition

Depth from thermal images consistently ensures reliable performance even in low-light and rainy conditions.

Thank you!

For more dataset and benchmark results, please visit our webpage!

https://sites.google.com/view/ multi-spectral-stereo-dataset

