

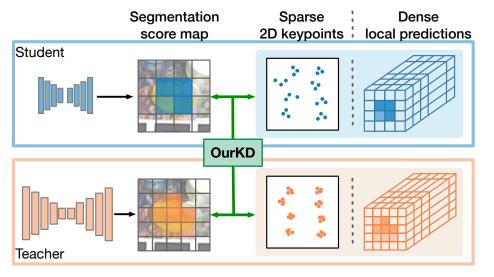
Knowledge Distillation for 6D Pose Estimation by Aligning Distributions of Local Predictions

Shuxuan Guo¹ Yinlin Hu² Jose M. Alvarez³ Mathieu Salzmann^{1,4} ¹CVLab, EPFL ²MagicLeap ³NVIDIA ⁴ClearSpace

> THU-AM-206 CVPR 2023

Preview

Task-driven KD for 6D pose estimation

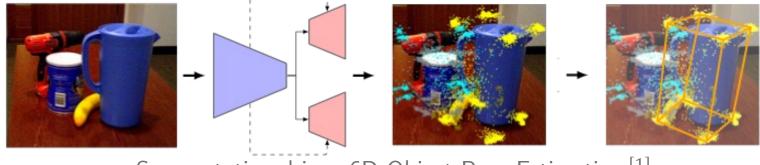


jointly distill *local prediction distribution* + *segmentation score map*

- Motivation
 - Compact student networks typically struggle to predict local sparse/dense predictions precisely.
- Method
 - Align local prediction distributions and segmentation score maps based on optimal transport algorithm.
- Take home messages
 - The first knowledge distillation in the context of 6D pose estimation.
 - Our KD generalizes to both sparse keypoints and dense predictions 6D pose estimation frameworks.
 - Our KD can be used in conjunction with feature distillations to further boost the student's performance.

Introduction

- Sparse keypoint-based
 - 8 corners of the 3D object bounding box



Segmentation-driven 6D Object Pose Estimation [1]

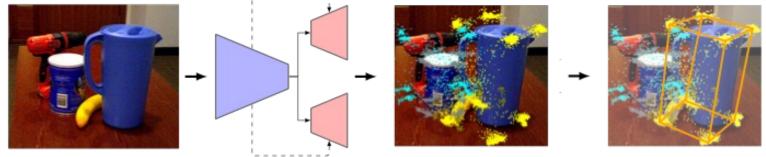
[1] Hu et al. "Segmentation-driven 6d object pose estimation." CVPR2019.

[2] Wang et al. "GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation." CVPR2021.

[3] Su et al. "ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation." CVPR2022.

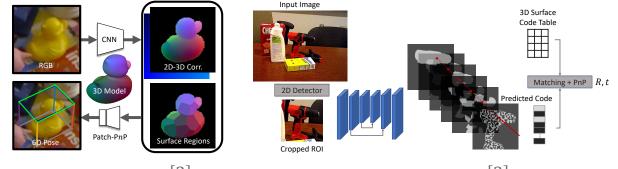
Introduction

- Sparse keypoint-based
 - 8 corners of the 3D object bounding box



Segmentation-driven 6D Object Pose Estimation [1]

- Dense local prediction-based
 - Intermediate dense representations
 - Pixel-wise 2D-to-3D correspondence
 - Extra geometry features



GDR-Net^[2]

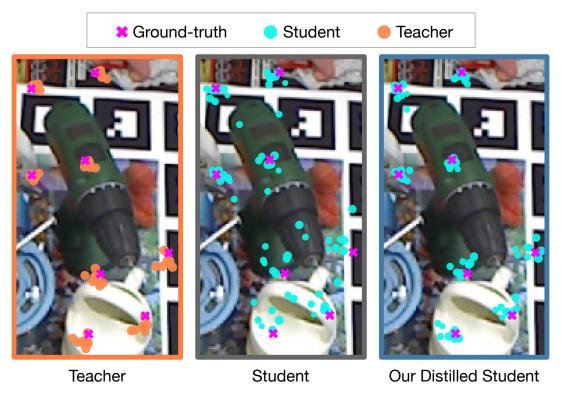
ZebraPose^[3]

[1] Hu et al. "Segmentation-driven 6d object pose estimation." CVPR2019.

[2] Wang et al. "GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation." CVPR2021.

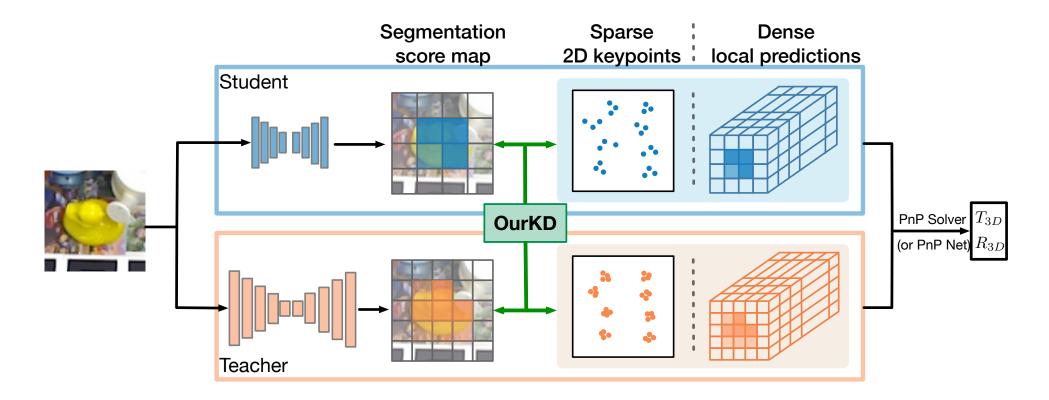
[3] Su et al. "ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation." CVPR2022.

Motivation



- Compact student network struggles predicting *precise* 2D keypoint locations as the teacher can do.
- *Local predictions*, such as sparse 2D keypoints or dense predictions, are important to 6D pose estimation.

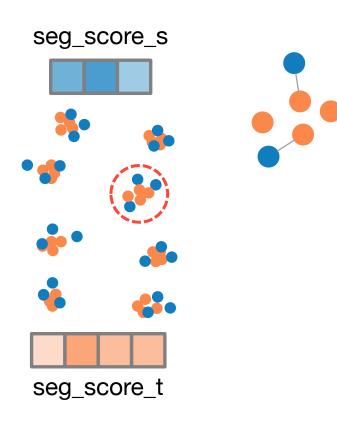
Method: Aligning Distributions of Local Predictions



Our KD is based on *optimal transport* that jointly distills the teacher's *local prediction distribution* + *segmentation score map* into the student.

Method

Method: Aligning Distributions of Local Predictions

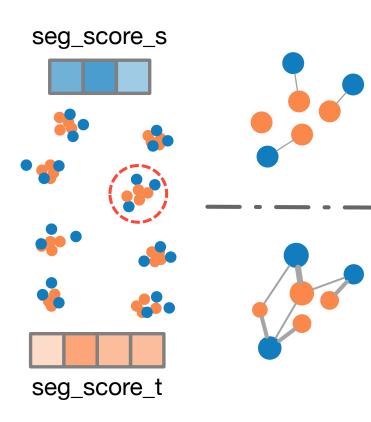


- KD on regressed location
 - All predictions are equal
 - Optimal transport
 - P_i^s, P_i^t : the student's / teacher's local predictions N^s, N^t : the number of student / teacher local predictions

$$\bar{\mathcal{L}}_{kd}(P^s, P^t; \pi) = \min_{\pi} \sum_{i=1}^{N^s} \sum_{j=1}^{N^t} \pi_{ij} \|P_i^s - P_j^t\|_p$$

s.t. $\forall i, \ \sum_{j=1}^{N^t} \pi_{ij} = \frac{1}{N^s}, \ \forall j, \ \sum_{i=1}^{N^s} \pi_{ij} = \frac{1}{N^t}$

Method: Aligning Distributions of Local Predictions



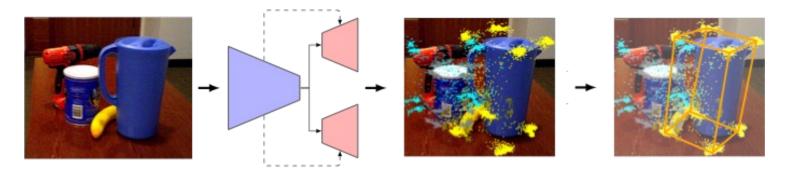
- KD on regressed location
 - All predictions are equal
 - Optimal transport
 - P_i^s, P_i^t : the student's / teacher's local predictions
 - N^s, N^t : the number of student / teacher local predictions

KD on regressed location + segmentation scores

- Predictions are *NOT* equal
- Weighted optimal transport
- Softer alignment α_i^s, α_j^t : segmentation score for cell i / j in student / teacher networks $\tilde{\mathcal{L}}_{kd}(P^s, P^t; \alpha^s, \alpha^t; \pi) = \min_{\pi} \sum_{i=1}^{N^s} \sum_{j=1}^{N^t} \pi_{ij} \|P_i^s - P_j^t\|_2$ s.t. $\forall i, \sum_{j=1}^{N^t} \pi_{ij} = \alpha_i^s, \forall j, \sum_{i=1}^{N^s} \pi_{ij} = \alpha_j^t$

Method: Keypoint Distribution Alignment

- WDRNet+ -- SOTA sparse keypoint-based approach
 - Predict the 2D locations of the 8 object bounding box corners
 - WDRNet* + Cropped ROI



• Loss: Separate losses for the 8 individual keypoints clusters

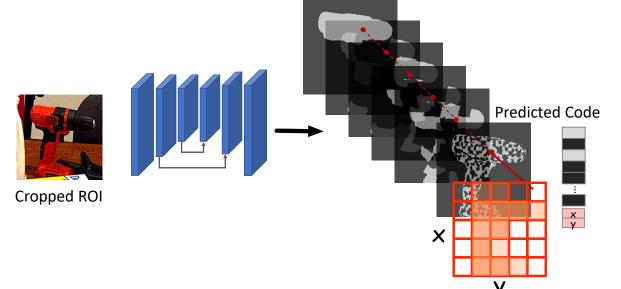
$$\mathcal{L}_{kd}^{kp}(\{C_k^s\}, \{C_k^t\}; \alpha^s, \alpha^t; \{\pi^k\}) = \sum_{k=1}^8 \mathcal{L}_{kd}(C_k^s, C_k^t; \alpha^s, \alpha^t; \pi^k).$$

 C_k^s, C_k^t : predictions for the kth 2D keypoint location; α^s, α^t : segmentation scores

* WDRNet: Hu et al. "Wide-Depth-Range 6D Object Pose Estimation in Space." CVPR2021.

Method: Dense Binary Code Distribution Alignment

- ZebraPose* -- SOTA dense local prediction-based approach
 - Predict a 16D binary code probability vector at each cell
 - Concatenate the x- and y-coordinate in the feature map



• Loss: over the average-pooled local augmented binary code probabilities

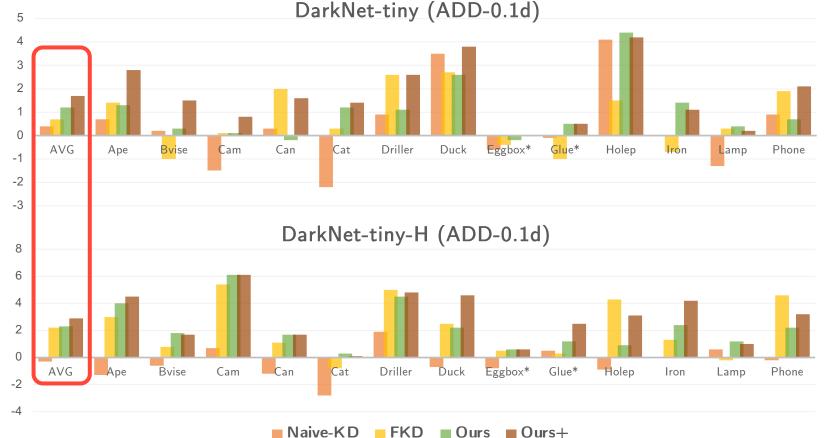
$$\mathcal{L}_{kd}^{bc}(B^s, B^t; \alpha^s, \alpha^t; \pi) = \mathcal{L}_{kd}(B^s, B^t; \alpha^s, \alpha^t; \pi).$$

 $B^s, B^t; \;\; lpha^s, lpha^t$: average-pooled local predictions and segmentation scores

* ZebraPose: Su et al. "ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation." CVPR2022.

Experiments & Results

- WDRNet+ -- SOTA sparse keypoint-based approach
 - LINEMOD

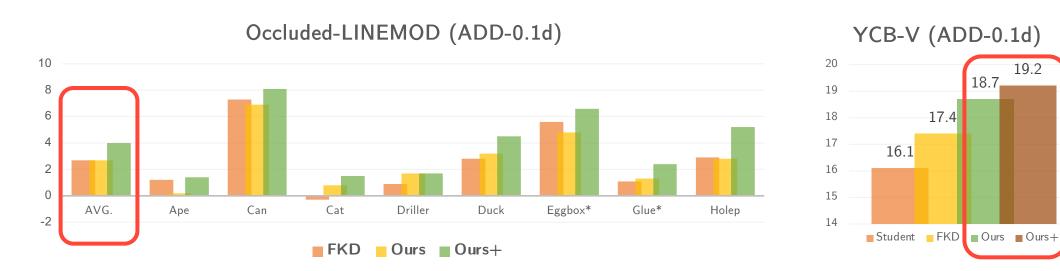


Experiments & Results

• WDRNet+ -- SOTA sparse keypoint-based approach

Occluded-LINEMOD

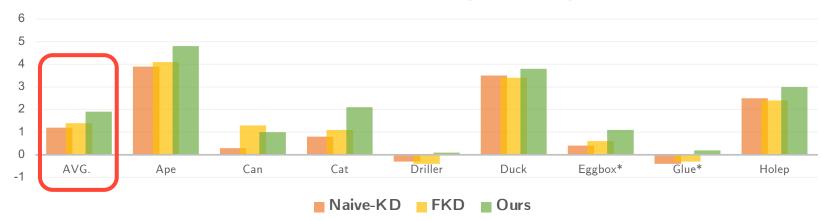
YCB-V



* FKD: Zhang et al. "Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors." ICLR2021.

Experiments & Results

- ZebraPose -- SOTA dense local prediction-based approach
 - Occluded-LINEMOD



Occluded-LINEMOD (ADD-0.1d)

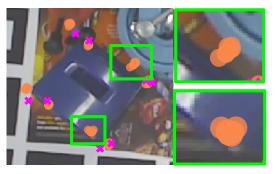
* FKD: Zhang et al. "Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors." ICLR2021.

Discussion

• Qualitative Analysis Teacher

Student

Ours



Keypoints

Pose

- *Mimic* the teacher's keypoints distributions & Predict *tighter* keypoints clusters
- *More accurate* 6D pose estimation

Discussion

Summary

- The first knowledge distillation in the context of 6D pose estimation.
- Our KD is driven by the 6D pose estimation task
 - Align the teacher and student local distributions together with their segmentation scores.
- Our KD generalizes to both sparse keypoints and dense predictions 6D pose estimation frameworks.
- Our KD can be used in conjunction with feature distillation to further boost the student's performance.

