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Overview of BadViT

We propose a novel backdoor attack framework for Vision Transformers 
(ViTs) named BadViT.
We explore the robustness of ViTs compared with Convolutional Neural 

Networks (CNNs) against backdoor attacks.
We utilize the self-attention mechanism of ViTs to achieve effective and invisible 

backdoor attacks based on data poisoning.
We show the effect of our BadViTs under several advanced defense methods.



Motivations

Vision Transformers (ViTs) have shaken the dominance of CNNs in 
computer visions.
Several works have discussed the robustness of ViTs against adversarial 

attacks and model-poisoning based backdoor attacks, while leave a 
space for data-poisoning based backdoor attacks.
Motivated by [1], patch-wise perturbation make ViTs weaker robust 

against adversarial attack than CNNs.

We aim to explore the robustness of CNNs and ViTs , and develop an 
efficient backdoor attack in ViTs.

[1] Y . Fu, S. Zhang, S. Wu, C. Wan, and Y. Lin. Patch-fool: Are vision transformers always robust against adversarial 
perturbations? ICLR 2022



Threat model

Considering ViTs are mostly used for fine-tuning to different 
applications, we follow the setting in [2];
Assuming attackers can access to the model architecture, parameters 

and dataset; while can not tamper the training schedule;
We attack in a format of “data poisoning” by modifying the input as 

well as the ground-truth label.

[2] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply 
chain, arXiv 2017.



Background

Given a ViT model ℱ ⋅ and a benign dataset 𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.
Input 𝑥𝑥𝑡𝑡 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 (label 𝑦𝑦𝑡𝑡) is divided into 𝐻𝐻×𝑊𝑊

𝑃𝑃2
patches with shape 𝑃𝑃 × 𝑃𝑃.

Each patch is used as a token to calculate the attention map through the multi-head self 
attention (MSA) module:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) = 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑥𝑥(𝑥𝑥𝑊𝑊𝑄𝑄(𝑥𝑥𝑊𝑊𝐾𝐾)𝑇𝑇

𝑑𝑑
𝑥𝑥𝑊𝑊𝑉𝑉).

Denote the poisoning input subset as 𝒟𝒟𝑏𝑏𝑑𝑑, poison proportion 𝜌𝜌 = |𝒟𝒟𝑏𝑏𝑏𝑏|
|𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|

.
Benign input 𝑥𝑥𝑗𝑗 is poisoned to backdoor input �𝑥𝑥𝑗𝑗 as (𝑦𝑦∗ is the target label):

𝑥𝑥𝑗𝑗 = 𝜇𝜇 𝑥𝑥𝑗𝑗 , 𝐴𝐴, 𝑙𝑙𝐴𝐴𝑙𝑙 , 𝐴𝐴𝑆𝑆 𝑦𝑦𝑗𝑗 ≠ 𝑦𝑦∗;
Let �ℱ(⋅) represent the backdoored model. For attacker, it’s crucial to ensure:
 �ℱ 𝑥𝑥𝑗𝑗 = 𝑦𝑦𝑗𝑗 → make the backdoor covert;
 �ℱ 𝑥𝑥𝑗𝑗 = 𝑦𝑦∗ → increase the Attack Success Rate (ASR).

min
𝜃𝜃

�
𝑥𝑥𝑡𝑡∈𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝒟𝒟𝑏𝑏𝑏𝑏

ℒ𝑡𝑡𝑡𝑡 ℱ(𝑥𝑥𝑡𝑡),𝑦𝑦𝑡𝑡 + �
𝑥𝑥𝑗𝑗∈𝒟𝒟𝑏𝑏𝑏𝑏

ℒ𝑏𝑏𝑑𝑑 ℱ(𝑥𝑥𝑗𝑗),𝑦𝑦∗ .



Robustness Comparison

We conduct experiments on the robustness of DeiT family and ResNet
family under patch trigger and blend trigger;
We find ViTs seems to be more stronger under blend trigger (Lower ASR 

and BA, means attack effect is not good and not covert), while weaker 
under patch trigger attack.



Visualization

 We visualize the attention score of ViT under different attack 
setting.
 Lighter colors indicate more attention on the patch.



How Do We Backdoor ViTs?

• Inspirations: 
Patch-wise trigger can improve attention score significantly.
Essence of backdoor is build a connection between trigger and target label in victim 

models.
• Key question: How to find an universal trigger that can more effectively 

attract the attention of ViTs ?



BadViT

Overview：
Generating an adversarial trigger 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 to fool the attention mechanism of ViTs.
Performing backdoor training to inject pre-defined backdoor into ViTs.



BadViT

 Consider an input image divided into 𝐾𝐾 patches: 𝑥𝑥 = {𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝐾𝐾}, trigger 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 is 
initialized with shape 𝐻𝐻 × 𝑊𝑊. Generating the backdoor input as:

�̂�𝑥 = 𝜇𝜇𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝(𝑥𝑥, 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎,𝑆𝑆) = (𝟏𝟏 −𝑆𝑆𝑘𝑘) ⋅ 𝑥𝑥 + 𝑆𝑆𝑘𝑘 ⋅ 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎
𝟏𝟏 = 1 𝐻𝐻×𝑊𝑊, 𝑆𝑆𝑘𝑘 = {0,1}𝐻𝐻×𝑊𝑊 is a mask matrix with 1 at 𝑘𝑘-th patch.
Attention map of 𝑙𝑙-th layer: Attention𝑙𝑙(𝑥𝑥) = 𝐴𝐴𝐶𝐶𝑡𝑡𝑙𝑙 ∈ ℝ𝐾𝐾 ∣ 𝐴𝐴 ∈ [1,𝐾𝐾] ;

𝐴𝐴𝐶𝐶𝑡𝑡𝑙𝑙 = 1
𝐾𝐾
∑𝑗𝑗∈|𝐾𝐾|𝑆𝑆𝑡𝑡,𝑗𝑗𝑙𝑙 is the attention score of 𝐴𝐴-th patch. (The sum of 𝐴𝐴-th patch’ 

attention  on other patches).
 Optimize 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 as:

arg max
𝑡𝑡𝑡𝑡𝑏𝑏𝑎𝑎

∑𝑙𝑙∈⌊𝐿𝐿⌋𝐴𝐴𝐶𝐶𝑘𝑘𝑙𝑙 ,

s.t. 𝐴𝐴𝐶𝐶𝑘𝑘𝑙𝑙 = Attention �̂�𝑥 𝑘𝑘 .



BadViT

Attention-based loss:
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 = �

𝑙𝑙∈⌊𝐿𝐿⌋

𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 −log(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙(�̂�𝑥),𝑘𝑘

where 𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙 is the negative log likelihood loss.
Initialize 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 as random noise, optimize iteratively:

𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎′ = 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 − 𝜂𝜂 ⋅ ∇𝑡𝑡𝑡𝑡𝑏𝑏𝑎𝑎𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡
Following the Project Gradient Descent (PGD) scheme. 𝜂𝜂 is the step size.

Invisible variants of BadViT:
We modify the optimization of 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 through 𝑙𝑙𝑝𝑝-constraint:

𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎′ = clip𝜖𝜖 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 − 𝜂𝜂 ⋅ ∇𝑡𝑡𝑡𝑡𝑏𝑏𝑎𝑎𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 ;
where clipϵ is a clip function to constrain 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 to satisfy 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 𝑝𝑝 ≤ 𝜖𝜖.

Further change the synthesizing function of trigger from pasting to blending:
�𝑥𝑥 = 𝜇𝜇𝑏𝑏𝑙𝑙𝑝𝑝𝑡𝑡𝑑𝑑 𝑥𝑥, 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎 ,𝑆𝑆 = 1 − 𝛼𝛼 𝑥𝑥 + 𝛼𝛼 ⋅ 𝑆𝑆𝑘𝑘 ⋅ 𝐴𝐴𝑡𝑡𝑑𝑑𝑎𝑎.



Experiment Setting

Dataset: ILSVRC2012; benchmark model: DeiT family [3].
Attack baseline setting: 
Generating an universal adversarial patch-wise trigger with 20 epochs.
Poisoning proportion 𝜌𝜌 = 0.1.
Target label index: 30 (namely “bullfrog”).
Performing backdoor training with 1 epoch on 4 Nvidia Geforce RTX 3090 

GPUs.
Selecting 0-th patch to add the trigger (usually with the least attention score).
Learning rate: 1e-5; 𝜂𝜂 = 0.2.
Evaluating Clean Accuracy (CA), Backdoor Accuracy (BA) and ASR. 

[3] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image transformers 
& distillation through attention, ICML 2021



Effectiveness of BadViT

BadViT is more effective in ViTs, with almost 100% ASR in different DeiTs
and LeViTs.
BadViT is with few data poisoning dependency, even achieves an ASR of 

95.25%  with only 0.2% data poisoned.



Effectiveness of BadViT

ASR of BadViT can achieve 99.87% under a 4×4 trigger setting.
BadViT converges fast at 1st epoch, and BA descends as backdoor 

training goes on.

Table 4. BadViT with different trigger sizes.

Fig 1. Convergence of BadViT.



Invisible Variants of BadViT

Two BadViT invisible variants can both achieve good attack performance.
ASR decreases when the perturbation strength 𝜖𝜖 declines.

Fig 2. Evaluations of invisible BadViT variants under 𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖 and 𝑙𝑙2 constraint.



Invisible Variants of BadViT



Trigger Robustness

Triggers with larger 𝜖𝜖 are effective in backdoor models with smaller 𝜖𝜖.
Vanilla trigger is not applicative in 𝑙𝑙2 constrint backdoor models.

Table 5. Transferability of different trigger settings.



Additional Experiments

We test BadViT in three downstream datasets.
We test BadViT with three target labels, and add triggers at 0-th, 95-th and 

195-th patch, respectively.

Table 7. Multi-targets of BadViT.



Resistance to PatchDrop [4]

TPR and TNR are the same level under different T and drop rate.

[4] K. Doan, Y. Liao, Y. Lao, P. Yang, P. Li. Defending backdoor attacks on vision transformer via patch processing. arXiv 2022.



Resistance to Neural Cleanse [5]

Although the anomaly indexes >2, CNN’s is larger, indicates it is easier 
to be detected.
The 𝑙𝑙1 norm of mask in BadViT is much smaller, and the target label is 

mistook to 20, means it can not be reversed successfully.

Table 8. Evaluation to Neural Cleanse on BadViT.

[5] B. Wang, Y . Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. Neural cleanse: Identifying and mitigating backdoor 
attacks in neural networks. IEEE S&P, 2019.



Resistance to Neural Cleanse

Neural Cleanse can successfully reverse the white patch trigger and 
corresponding mask in CNN.



Resistance to Neural Cleanse

The reversed trigger’s locations are both mistaken.



Resistance to Fine-Pruning [6]

Pruning neurons in the FC layers of ViTs.
BA decreases with the pruning layers and proportion increases.
ASR keeps 100% with 0.5 neurons in 12 layers pruned, and drops 

to 0% with 0.9 neurons pruned.

Table 9. Evaluation to pruning on BadViT.

[6] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defending against backdooring attacks on deep neural networks. Springer, 
2018 



Resistance to Fine-Pruning

Pruning with 0.77 proportion of all neurons.
Fine-tune the pruned model with 20 epochs.
ASR decreases to 0%; BA increase within the first 14 

epochs, while drops to 0.10%.

Table 10. Different pruning proportion in all 12 layers.

Table 11. Evaluation of fine-pruning.



Conclusion

We systematically compare the robustness of ViTs and 
CNNs against backdoor attack.
We propose BadViT, which uses an adversarial patch-wise 

trigger to fool the self-attention mechanism of ViTs.
We further propose the invisible variants of BadViT to 

make the attack more convert.
We prove the effectiveness of BadViT based on three  

defense methods.
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