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WaveDiff overview
Pixel space Wavelet space
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CIFAR-10: Diffusion model that closes the gap speed 
with GAN methods



Single-image sampling time 
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Produce images up to 1024 × 1024 in a mere 0.1s, which is the first time for a diffusion 
model to achieve such almost real-time performance.



Diffusion models

[CVPR 2022 tutorial] Denoising Diffusion-based Generative Modeling: Foundations and Applications

Cons: requires thousand-steps traversal to generate a sample. Super low and computational!
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Pros: superior performance on variety of tasks + flexible conditional inputs

https://cvpr2022-tutorial-diffusion-models.github.io/


Prior works
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Distillation
(Luhman & Luhman) 

DDGAN 
(Xiao et al) 

DDIM
(Song et al) 

None of them can fully address sampling speed
for both training and testing phase.

Our method instead utilizes wavelet transformation
to improve sampling efficiency of DDGAN 
while maintaining competitive visual quality.
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Wavelet diffusion scheme
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4x smaller dimension. More compute-efficient.

Disentangled representation of low-and-high frequencies. Simpler to Learn.



and then draws the less noisy sample from 𝑦()*+ ∼ 𝑞 𝑦()* 𝑦(, 𝑦,+)

Training objective
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Generator loss:

(2) Reconstruction loss: impede the loss of frequency information.

(1) Adversarial loss:
Original Loss

Our additional loss

Given noisy sample 𝑦(, latent 𝑧 ∼ 𝒩 0, 𝑰 and time 𝑡, generator outputs 
clean sample 𝑦,+ = 𝐺(𝑦(, 𝑧, 𝑡)

ℒ-./0 = − log (𝐷 𝑦()*, 𝑦(, 𝑡 ) + log (𝐷(𝑦()*+ , 𝑦(, 𝑡)) ,
ℒ-./1 = − log (𝐷(𝑦()*+ , 𝑦(, 𝑡)) ,

ℒ234 = 𝑦,+ − 𝑦,

ℒ1 = ℒ-./1 + 𝜆 ℒ234



Wavelet-embedded Generator
Wavelet downsample layer

Freq-aware up and down block

Frequency bottleneck block

8
Integrate wavelet information to 

feature space



Wavelet-embedded Generator
Wavelet downsample layer

Freq-aware up and down block

Frequency bottleneck block
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Inject input signals to feature pyramids.



Wavelet-embedded Generator
Wavelet downsample layer

Freq-aware up and down block

Frequency bottleneck block
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Utilize wavelet transformations for 
upsampling and downsampling



Wavelet-embedded Generator
Wavelet downsample layer

Freq-aware up and down block

Frequency bottleneck block
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Focus on low-frequency subbands while 
preserving high-frequency details.



Results – CIFAR10
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2.5x faster



Results – STL10
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Results – CelebA HQ
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Results - LSUN Church
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Ablation on wavelet-embedded generator
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Alation on CelebA-HQ 256. Each setting is trained 
for 500 epochs.



Conclusions
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Present a novel Wavelet-
based Diffusion scheme for efficient 
sampling.

Integrating wavelet transformations in 
both pixel and feature space, our 
method effectively reduces the speed 
gap with StyleGAN models while 
delivering competitive benchmarking.

Offer faster training convergence than 
the baseline.

Facilitate future studies on real-time 
and high-fidelity diffusion models.



Thank you for 
your attention!
tienhaophung@gmail.com
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