

Wavelet Diffusion Models are fast and scalable Image Generators

Hao Phung*

Quan Dao*

*Equal contribution

Poster: WED-AM-188

Anh Tran

WaveDiff overview

Pixel space

Wavelet space

CIFAR-10: Diffusion model that closes the gap speed with GAN methods

Single-image sampling time

	CIFAR-10	STL-10	CelebA(256)	CelebA(512)	CelebA(1024)	Church
Resolution	32	64	256	512	1024	256
#time steps	4	4	2	2	2	4
Time (s)	0.07	0.12	0.08	0.1	0.12	0.16

Produce images up to 1024×1024 in a mere 0.1s, which is the first time for a diffusion model to achieve such almost real-time performance.

Diffusion models

Generative reverse denoising process

Pros: superior performance on variety of tasks + flexible conditional inputs

Cons: requires thousand-steps traversal to generate a sample. Super low and computational!

Prior works

DDIM

Forward

Backward

Forward

Backward

X₀

X₀

X₀

X₀

GAN

Distillation (Luhman & Luhman)

Distill

X_T

GAN

 $T \in \{2, 4\}$

for both training and testing phase.

Our method instead utilizes wavelet transformation to improve sampling efficiency of DDGAN while maintaining competitive visual quality.

X_M

XM

Wavelet diffusion scheme

4x smaller dimension. More compute-efficient.

Disentangled representation of low-and-high frequencies. Simpler to Learn.

Training objective

Given noisy sample y_t , latent $z \sim \mathcal{N}(0, I)$ and time t, generator outputs clean sample $y'_0 = G(y_t, z, t)$

and then draws the less noisy sample from $y'_{t-1} \sim q(y_{t-1}|y_t, y'_0)$

Original Loss ~

- (1) Adversarial loss:

$$\begin{aligned} \mathcal{L}_{adv}^{D} &= -\log \left(D(y_{t-1}, y_{t}, t) \right) + \log \left(D(y_{t-1}', y_{t}, t) \right), \\ \mathcal{L}_{adv}^{G} &= -\log \left(D(y_{t-1}', y_{t}, t) \right), \end{aligned}$$

(2) Reconstruction loss: impede the loss of frequency information. $\mathcal{L}_{rec} = \|y'_0 - y_0\|$

Our additional loss

Generator loss: $\mathcal{L}^{G} = \mathcal{L}^{G}_{adv} + \frac{\lambda}{\lambda} \mathcal{L}_{rec}$

Wavelet Downsample

Inject input signals to feature pyramids.

1 Wavelet downsample layer

2 Freq-aware up and down block

3 Frequency bottleneck block

Utilize wavelet transformations for upsampling and downsampling

1 Wavelet downsample layer

2 Freq-aware up and down block

3 Frequency bottleneck block

ResBlock_{XN} hi-sub

Freq Bottleneck Block

Focus on low-frequency subbands while preserving high-frequency details.

1 Wavelet downsample layer

2 Freq-aware up and down block

3 Frequency bottleneck block

Results – CIFAR10

Model	FID↓	Recall↑	NFE↓	Time (s)↓
Ours	4.01	0.55	4	0.08
DDGAN [50]	3.75	0.57	4	0.21 (0.30*)
DDPM [13]	3.21	0.57	1000	80.5
NCSN [42]	25.3	-	1000	107.9
Score SDE (VE) [44]	2.20	0.59	2000	423.2
Score SDE (VP) [44]	2.41	0.59	2000	421.5
DDIM [40]	4.67	0.53	50	4.01
FastDDPM [25]	3.41	0.56	50	4.01
Recovery EBM [8]	9.58	-	180	-
DDPM Distillation [30]	9.36	0.51	1	-
StyleGAN2 w/o ADA [21]	8.32	0.41	1	0.04
StyleGAN2 w/ ADA [19]	2.92	0.49	1	0.04
StyleGAN2 w/ Diffaug [19]	5.79	0.42	1	0.04
Glow [23]	48.9	-	1	-
PixelCNN [33]	65.9	-	1024	-
NVAE [46]	23.5	0.51	1	0.36
VAEBM [49]	12.2	0.53	16	8.79

2.5x faster

Results – STL10

Model	FID↓	Recall↑	Time (s)↓
Ours + W-Generator	12.93	0.41	0.38
DDGAN [50]	21.79	0.40	0.58
StyleGAN2 w/o [19]	11.70	0.44	-
StyleGAN2 w/ ADA [57]	13.72	0.36	-
StyleGAN2 + DiffAug [57]	12.97	0.39	-

Results – CelebA HQ

Model	FID↓	Recall↑	Time (s)↓
Ours	6.55	0.35	0.60
Ours + W-Generator	5.94	0.37	0.79
DDGAN [50]	7.64	0.36	1.73
Score SDE [44]	7.23	-	-
NVAE [46]	29.7	-	-
VAEBM [49]	20.4	-	-
PGGAN [18]	8.03	-	-
VQ-GAN [6]	10.2	-	-

Model	$\mathrm{FID}{\downarrow}$	$\mathrm{Recall}\uparrow$	Time (s) \downarrow		
CelebA-HQ 512					
Ours + W-Generator	6.40	0.35	0.59		
DDGAN [1]	8.43	0.33	1.49		
CelebA-HQ 1024					
Ours + W-Generator	5.98	0.39	0.59		

DDGAN

Ours

Results - LSUN Church

Model	FID↓	Recall↑	Time (s)↓
Ours + W-Generator	5.06	0.40	1.54
DDGAN [50]	5.25	-	3.42
DDPM [13]	7.89	-	-
ImageBART [5]	7.32	-	-
PGGAN [18]	6.42	-	-
StyleGAN [20]	4.21	-	-
StyleGAN2 [19]	3.86	0.36	-

Ablation on wavelet-embedded generator

Model	FID↓	Time (s)↓
w/o residual	6.25	0.78
w/o up & down	6.23	0.61
w/o bottleneck	6.18	0.78
full model	5.94	0.79

Alation on CelebA-HQ 256. Each setting is trained for 500 epochs.

Conclusions

Present a novel Waveletbased Diffusion scheme for efficient sampling.

Integrating wavelet transformations in both pixel and feature space, our method effectively reduces the speed gap with StyleGAN models while delivering competitive benchmarking.

Offer faster training convergence than the baseline.

Facilitate future studies on real-time and high-fidelity diffusion models.

Thank you for your attention!

tienhaophung@gmail.com

