DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks

Samyak Jain* Sravanti Addepalli* Pawan Sahu Priyam Dey R. Venkatesh Babu

Vision and AI Lab, Department of Computational and Data Sciences

Indian Institute of Science, Bangalore

Vision & AI Lab

Overview

Method	CIFAR-10	CIFAR-100
ERM+EMA (Pad+Crop+HFlip)	96.41	81.67
ERM+EMA (AutoAugment)	97.50	84.20
ERM+EMA (Cutout)	97.43	82.33
ERM+EMA (Cutmix)	97.11	84.05
Learning Subspaces	97.46	83.91
ERM+EMA (Mixed Training-MT) DART (Ours)	97.69 ± 0.19 97.96 ± 0.06	85.57 ± 0.13 86.46 ± 0.12

Algorithm	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Avg
ERM + DART (Ours)	$\begin{array}{c} 77.5 \pm 0.4 \\ 78.5 \pm 0.7 \end{array}$	85.5 ± 0.2 87.3 ± 0.5	$\begin{array}{c} 66.5 \pm 0.3 \\ 70.1 \pm 0.2 \end{array}$	46.1 ± 1.8 48.7 ± 0.8	$40.9 \pm 0.1 \\ 45.8 \pm 0.0$	63.3 66.1
SWAD + DART (Ours)	$\begin{array}{c} 79.1 \pm 0.1 \\ \textbf{80.3} \pm 0.2 \end{array}$	88.1 ± 0.1 88.9 ± 0.1	$\begin{array}{c} 70.6 \pm 0.2 \\ \textbf{71.9} \pm 0.1 \end{array}$	$\begin{array}{c} 50.0 \pm 0.3 \\ \textbf{51.3} \pm 0.2 \end{array}$	$\begin{array}{c} 46.5 \pm 0.1 \\ \textbf{47.1} \pm 0.0 \end{array}$	66.9 67.9

Generalization of Deep Neural Networks

Generalization of Deep Neural Networks

DART- Diversify Aggregate Repeat Training

- Traversing to the basin of optimal solutions: Mixed Training (MT) of a single model is done for E' epochs
- Diversify Exploring the basin: Individual experts are trained using different augmentations/ domains to improve diversity across models
- Aggregate Combining diverse experts: Weights of all experts are averaged to obtain a single model
- Repeat: Each expert is reinitialized with the interpolated model, and this process is repeated until convergence

Empirical Results

• Improved performance in the In-Domain setting

Method	CIFAR-10	CIFAR-100	ERM	+EMA	ERM-	+SWA	DART	SAM+EM	A DART+SA	M+EMA
ERM+EMA (Pad+Crop+HFlip)	96.41	81.67	85.5	7 ± 0.13	85.44	± 0.09	86.46 ± 0.12	87.05 ± 0.1	5 87.26	± 0.02
ERM+EMA (AutoAugment)	97.50	84.20								
ERM+EMA (Cutout)	97.43	82.33								
ERM+EMA (Cutmix)	97.11	84.05								
Learning Subspaces	97.46	83.91		Stan	ford-CA	ARS	CUE	8-200	Imagenet-	1 K
			_	ERM +	EMA	DART	ERM + EM	IA DART	ERM + EMA	DART
ERM+EMA (Mixed Training-MT)	97.69 ± 0.19	85.57 ± 0.13	SA	88.1	1	90.42	78.55	79.75	78.55	78.96
DART (Ours)	97.96 ± 0.06	86.46 ± 0.12	MA	90.8	8	91.95	81.72	82.83	79.06	79.20

• SOTA performance in the Domain Generalization (DG) setting

Algorithm	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Avg
ERM	77.5 ± 0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	63.3
+ DART (Ours)	78.5 ± 0.7	87.3 ± 0.5	70.1 ± 0.2	48.7 ± 0.8	45.8 ± 0.0	66.1
SWAD	79.1 ± 0.1	88.1 ± 0.1	70.6 ± 0.2	50.0 ± 0.3	46.5 ± 0.1	66.9
+ DART (Ours)	$\textbf{80.3}\pm0.2$	$\textbf{88.9}\pm0.1$	$\textbf{71.9}\pm0.1$	$\textbf{51.3}\pm0.2$	$\textbf{47.1} \pm 0.0$	67.9

Proposed Approach: DART

Diverse Training for Improved Generalization

 Simplicity Bias – tendency to rely on simpler features that are often spurious correlations to the labels, when compared to the harder robust features

• Simplicity Bias is one of the reasons for the sensitivity of Deep Networks to distribution shifts

Image source: Shah et al., The Pitfalls of Simplicity Bias in Neural Networks

Data Augmentations

Image source: Hendrycks et al., The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization

Image source: Gulrajani et al., In Search of Lost Domain Generalization

Ensemble of diverse experts

- Training a model using augmented data **specializes** the model to the same distribution
- **Mixed Training:** Generalization of the model improves when diverse augmentations are used in a single training minibatch, but performance is limited by the capacity of the model
- Using an ensemble of diverse models trained on different augmentations results in improved generalization, but with higher inference time

	Test Augmentation						
Train Augmentation	No Aug.	Cutout	Cutmix	AutoAugment			
Pad+Crop+HFlip (PC)	78.51	67.04	56.52	58.33			
Cutout (CO)	77.99	74.58	56.12	58.47			
Cutmix (CM)	80.54	74.05	77.35	61.23			
AutoAugment (AA)	79.18	71.26	60.97	73.91			
Mixed-Training (MT)	81.43	77.31	73.20	74.73			
Ensemble (CM+CO+AA)	83.61	79.19	73.19	73.90			

DART- Diversify Aggregate Repeat Training

- Traversing to the basin of optimal solutions:
 Mixed Training (MT) of a single model is done for E' epochs
- Diversify Exploring the basin: Individual experts are trained using different augmentations/ domains to improve diversity across models
- Aggregate Combining diverse experts: Weights of all experts are averaged to obtain a single model
- Repeat: Each expert is reinitialized with the interpolated model, and this process is repeated until convergence

Optimization trajectory

- The models explore more in the initial phase of training, and lesser thereafter due to the cosine learning rate schedule
- Initial exploration increases the diversity of models improving robustness to spurious features
- Repeated aggregation ensures that the models remain close to each other
- Smaller steps towards the end help in retaining the flatter optima obtained after Aggregation

Theoretical and Empirical results

Proposition 1 The convergence time for learning any feature patch $v_i \,\forall i \in [1, K]$ in at least one channel $c \in C$ of the weight averaged model f_{θ} using the augmentations defined in Eq.5, is given by $O\left(\frac{K}{\sigma_0^{q-2}}\right)$, if $\frac{\sigma^q}{\sqrt{d}} \ll \frac{1}{K}$, m = K.

Method	CIFAR-10	CIFAR-100
ERM+EMA (Pad+Crop+HFlip)	96.41	81.67
ERM+EMA (AutoAugment)	97.50	84.20
ERM+EMA (Cutout)	97.43	82.33
ERM+EMA (Cutmix)	97.11	84.05
Learning Subspaces	97.46	83.91
ERM+EMA (Mixed Training-MT)	97.69 ± 0.19	85.57 ± 0.13
DART (Ours)	97.96 ± 0.06	86.46 ± 0.12

Method	Pad+Crop+HFlip	AutoAug.	Cutout	Cutmix	Mixed-Train.
ERM	81.48	83.93	82.01	83.02	85.54
ERM + EMA	81.67	84.20	82.33	84.05	85.57
DART (Ours)	82.31	85.02	84.15	84.72	86.13

Impact of Weight Averaging

Weights learned by a single layer neural network are a combination of the feature and noisy patches
present in images

$$w = \sum_{k=1}^{K_{cut}} v_k + \sum_{k>K_{cut}} y^{(k)} \epsilon^{(k)}$$

- Weight averaging can improve learning and achieve robustness to spurious features as:
 - Use of diverse augmentations helps in learning less frequent (hard) feature patches
 - Weight averaging helps in **reducing the variance** of noise

$$w = \frac{1}{m} \sum_{j=1}^{m} \sum_{k=1}^{K_{cut_j}} v_{k_j} + \frac{1}{m} \sum_{j=1}^{m} \sum_{k>K_{cut_j}} y_j^{(k)} \epsilon_j^{(k)}$$

Theoretical setup from: Ruoqi Shen, Sebastian Bubeck and Suriya Gunasekar, Data Augmentations as Feature Manipulation (ICML-2022)

Theoretical Results

Proposition 1 The convergence time for learning any feature patch $v_i \,\forall i \in [1, K]$ in at least one channel $c \in C$ of the weight averaged model f_{θ} using the augmentations defined in Eq.5, is given by $O\left(\frac{K}{\sigma_0^{q-2}}\right)$, if $\frac{\sigma^q}{\sqrt{d}} \ll \frac{1}{K}$, m = K.

On weight averaging, the **convergence time for learning less frequent feature patches decreases**. Thus, the learning of hard features becomes easier.

Proposition 2 If the noise patches learned by each f_{θ}^k are *i.i.d.* Gaussian random variables $\sim \mathcal{N}(0, \frac{\sigma^2}{d}I_d)$ then with high probability, convergence time of learning a noisy patch $\epsilon^{(j)}$ in at least one channels $c \in [1, C]$ of the weight averaged model f_{θ} is given by $O\left(\frac{nm}{\sigma_0^{q-2}\sigma^q}\right)$, if $d \gg n^2$.

On weight averaging, the **convergence time for learning noisy/ spurious features increases by O(m),** where m is the number of expert models.

Theoretical Results

Proposition 3 If the noise learned by each f_{θ}^k are i.i.d. Gaussian random variables $\sim \mathcal{N}\left(0, \frac{\sigma^2}{d}I_d\right)$, and model weight averaging is performed at epoch T, the convergence time of learning a noisy patch $\epsilon^{(j)}$ in at least one channels $c \in [1, C]$ of the weight averaged model f_{θ} is given by $T + O\left(\frac{nm^{(q-2)}d^{(q-2)/2}}{\sigma^{(2q-2)}}\right)$ if $d \gg n^2$.

Intermediate interpolations increase the convergence time for learning spurious features when compared to weight averaging only during inference

Empirical Results: In Domain Generalization

Method	CIFAR-10	CIFAR-100
ERM+EMA (Pad+Crop+HFlip)	96.41	81.67
ERM+EMA (AutoAugment) ERM+EMA (Cutout)	97.30 97.43	84.20 82.33
ERM+EMA (Cutmix)	97.11 97.46	84.05 83.91
ERM+EMA (Mixed Training-MT)	97.69 ± 0.19	85.57 ± 0.13
DART (Ours)	97.96 ± 0.06	86.46 ± 0.12

Model Architecture: WideResNet-28-10

Using same augmentations across models

Method	Pad+Crop+HFlip	AutoAug.	Cutout	Cutmix	Mixed-Train.
ERM	81.48	83.93	82.01	83.02	85.54
ERM + EMA	81.67	84.20	82.33	84.05	85.57
DART (Ours)	82.31	85.02	84.15	84.72	86.13

Empirical Results: In Domain Generalization

• DART can also be combined with SAM to obtain better results (CIFAR-100, WRN-34-10)

ERM+EMA	ERM+SWA	DART	SAM+EMA	DART+SAM+EMA
85.57 ± 0.13	85.44 ± 0.09	86.46 ± 0.12	87.05 ± 0.15	87.26 ± 0.02

• DART obtains improved results on ImageNet and fine-grained datasets

	Stanford-CARS		CUB-200		Imagenet-1K	
_	ERM + EMA	DART	ERM + EMA	DART	ERM + EMA	DART
SA	88.11	90.42	78.55	79.75	78.55	78.96
MA	90.88	91.95	81.72	82.83	79.06	79.20

SA: Single Augmentation, MA: Mixed Augmentations

Empirical Results: Domain Generalization

Algorithm	VLCS	PACS	OfficeHome	TerraIncognita	DomainNet	Avg
ERM	77.5 ± 0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	63.3
IRM	78.5 ± 0.5	83.5 ± 0.8	64.3 ± 2.2	47.6 ± 0.8	33.9 ± 2.8	61.6
GroupDRO	76.7 ± 0.6	84.4 ± 0.8	66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	60.7
Mixup	77.4 ± 0.6	84.6 ± 0.6	68.1 ± 0.3	47.9 ± 0.8	39.2 ± 0.1	63.4
MLDG	77.2 ± 0.4	84.9 ± 1.0	66.8 ± 0.6	47.7 ± 0.9	41.2 ± 0.1	63.6
CORAL	78.8 ± 0.6	86.2 ± 0.3	68.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	64.5
MMD	77.5 ± 0.9	84.6 ± 0.5	66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	58.8
DANN	78.6 ± 0.4	83.6 ± 0.4	65.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	62.6
CDANN	77.5 ± 0.1	82.6 ± 0.9	65.8 ± 1.3	45.8 ± 1.6	38.3 ± 0.3	62.0
MTL	77.2 ± 0.4	84.6 ± 0.5	66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	62.9
SagNet	77.8 ± 0.5	86.3 ± 0.2	68.1 ± 0.1	48.6 ± 1.0	40.3 ± 0.1	64.2
ARM	77.6 ± 0.3	85.1 ± 0.4	64.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	61.7
VREx	78.3 ± 0.2	84.9 ± 0.6	66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	61.9
RSC	77.1 ± 0.5	85.2 ± 0.9	65.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	62.7
SWAD	79.1 ± 0.1	88.1 ± 0.1	70.6 ± 0.2	50.0 ± 0.3	46.5 ± 0.1	66.9
DART w/o SWAD	78.5 ± 0.7	87.3 ± 0.5	70.1 ± 0.2	48.7 ± 0.8	45.8	66.1
DART w/ SWAD	$\textbf{80.3}\pm0.2$	$\textbf{88.9}\pm0.1$	71.9 ± 0.1	$\textbf{51.3}\pm0.2$	47.2	67.9

Combining DART with other DG methods

• DART can be integrated with several base domain generalization approaches – both with and without SWAD, to obtain substantial gains across the respective baselines.

Algorithm	Vanilla	DART (w/o SWAD)	SWAD	DART (+ SWAD)
ERM	66.5	70.31	70.60	72.28
ARM	64.8	69.24	69.75	71.31
SAM	67.4	70.39	70.26	71.55
Cutmix	67.3	70.07	71.08	71.49
Mixup	68.1	71.14	71.15	72.38
DANN	65.9	70.32	69.46	70.85
CDANN	65.8	70.75	69.70	71.69
SagNet	68.1	70.19	70.84	71.96
MIRO	70.5	72.54	72.40	72.71
MIRO (CLIP)	83.3	86.14	84.80	87.37

Conclusion

Conclusion

- We propose the Mixed Training (MT) benchmark which uses a combination of diverse augmentations during training in a single minibatch, and obtains improved results in an in-domain generalization setting
- We propose DART Diversify Aggregate Repeat Training, an algorithm to improve generalization of models by firstly training diverse models, and further aggerating their weights throughout training.
- Theoretical results:
 - Lower convergence time for learning hard features (learning of diverse features)
 - Higher convergence time for learning noisy features by incorporating intermediate weight averaging (robustness to spurious features)
- Empirical results:
 - Improved performance in the In-Domain setting
 - SOTA performance in the Domain Generalization (DG) setting
 - Adaptable with different Domain Generalization methods

Thank You!

https://github.com/val-iisc/dart

Vision & AI Lab

Acknowledgements: This work was supported by the research grant CRG/2021/005925 from SERB, DST, Govt. of India. Sravanti Addepalli is supported by Google PhD Fellowship.